2,298 research outputs found

    Quantum computing with alkaline earth atoms

    Get PDF
    We present a complete scheme for quantum information processing using the unique features of alkaline earth atoms. We show how two completely independent lattices can be formed for the 1^1S0_0 and 3^3P0_0 states, with one used as a storage lattice for qubits encoded on the nuclear spin, and the other as a transport lattice to move qubits and perform gate operations. We discuss how the 3^3P2_2 level can be used for addressing of individual qubits, and how collisional losses from metastable states can be used to perform gates via a lossy blockade mechanism.Comment: 4 pages, 3 figures, RevTeX

    Unitary nn-designs via random quenches in atomic Hubbard and Spin models: Application to the measurement of R\'enyi entropies

    Full text link
    We present a general framework for the generation of random unitaries based on random quenches in atomic Hubbard and spin models, forming approximate unitary nn-designs, and their application to the measurement of R\'enyi entropies. We generalize our protocol presented in [Elben2017: arXiv:1709.05060, to appear in Phys. Rev. Lett.] to a broad class of atomic and spin lattice models. We further present an in-depth numerical and analytical study of experimental imperfections, including the effect of decoherence and statistical errors, and discuss connections of our approach with many-body quantum chaos.Comment: This is a new and extended version of the Supplementary material presented in arXiv:1709.05060v1, rewritten as a companion paper. Version accepted to Phys. Rev. A. Minus sign corrected in Eq (5

    Ground State Laser Cooling Beyond the Lamb-Dicke Limit

    Full text link
    We propose a laser cooling scheme that allows to cool a single atom confined in a harmonic potential to the trap ground state ∣0>|0>. The scheme assumes strong confinement, where the oscillation frequency in the trap is larger than the effective spontaneous decay width, but is not restricted to the Lamb-Dicke limit, i.e. the size of the trap ground state can be larger than the optical wavelength. This cooling scheme may be useful in the context of quantum computations with ions and Bose-Einstein condensation.Comment: 6 pages, 4 figures, to appear in Europhysics Letter

    Continuous Observation of Interference Fringes from Bose Condensates

    Full text link
    We use continuous measurement theory to describe the evolution of two Bose condensates in an interference experiment. It is shown how the system evolves in a single run of the experiment into a state with a fixed relative phase, while the total gauge symmetry remains unbroken. Thus, an interference pattern is exhibited without violating atom number conservation.Comment: 4 pages, Postscrip

    Quantum simulation and optimization in hot quantum networks

    No full text
    • …
    corecore