2,143 research outputs found

    Theory of cavity-assisted microwave cooling of polar molecules

    Get PDF
    We analyze cavity-assisted cooling schemes for polar molecules in the microwave domain, where molecules are excited on a rotational transition and energy is dissipated via strong interactions with a lossy stripline cavity, as recently proposed by A. Andre et al., Nature Physics 2, 636 (2006). We identify the dominant cooling and heating mechanisms in this setup and study cooling rates and final temperatures in various parameter regimes. In particular we analyze the effects of a finite environment temperature on the cooling efficiency, and find minimal temperature and optimized cooling rate in the strong drive regime. Further we discuss the trade-off between efficiency of cavity cooling and robustness with respect to ubiquitous imperfections in a realistic experimental setup, such as anharmonicity of the trapping potential

    Absorption in Ultra-Peripheral Nucleus-Atom Collisions in Crystal

    Full text link
    The Glauber theory description of particle- and nucleus-crystal Coulomb interactions at high-energy is developed. The allowance for the lattice thermal vibrations is shown to produce strong absorption effect which is of prime importance for quantitative understanding of the coherent Coulomb excitation of ultra-relativistic particles and nuclei passing through the crystal.Comment: 8 pages, LaTe

    Controlled collisions of a single atom and ion guided by movable trapping potentials

    Full text link
    We consider a system composed of a trapped atom and a trapped ion. The ion charge induces in the atom an electric dipole moment, which attracts it with an r^{-4} dependence at large distances. In the regime considered here, the characteristic range of the atom-ion interaction is comparable or larger than the characteristic size of the trapping potential, which excludes the application of the contact pseudopotential. The short-range part of the interaction is described in the framework of quantum-defect theory, by introducing some short-range parameters, which can be related to the s-wave scattering length. When the separation between traps is changed we observe trap-induced shape resonances between molecular bound states and vibrational states of the external trapping potential. Our analysis is extended to quasi-one-dimensional geometries, when the scattering exhibit confinement-induced resonances, similar to the ones studied before for short-range interactions. For quasi-one-dimensional systems we investigate the effects of coupling between the center of mass and relative motion, which occurs for different trapping frequencies of atom and ion traps. Finally, we show how the two types of resonances can be employed for quantum state control and spectroscopy of atom-ion molecules.Comment: 17 pages, 16 figure

    Opto-mechanical transducers for long-distance quantum communication

    Get PDF
    We describe a new scheme to interconvert stationary and photonic qubits which is based on indirect qubit-light interactions mediated by a mechanical resonator. This approach does not rely on the specific optical response of the qubit and thereby enables optical quantum interfaces for a wide range of solid state spin and charge based systems. We discuss the implementation of quantum state transfer protocols between distant nodes of a large scale network and evaluate the effect of the main noise sources on the resulting state transfer fidelities. For the specific examples of electronic spin qubits and superconducting charge qubits we show that high fidelity quantum communication protocols can be implemented under realistic experimental conditions.Comment: Version as accepted by PR

    Probing topology by "heating": Quantized circular dichroism in ultracold atoms

    Full text link
    We reveal an intriguing manifestation of topology, which appears in the depletion rate of topological states of matter in response to an external drive. This phenomenon is presented by analyzing the response of a generic 2D Chern insulator subjected to a circular time-periodic perturbation: due to the system's chiral nature, the depletion rate is shown to depend on the orientation of the circular shake. Most importantly, taking the difference between the rates obtained from two opposite orientations of the drive, and integrating over a proper drive-frequency range, provides a direct measure of the topological Chern number of the populated band (ν\nu): this "differential integrated rate" is directly related to the strength of the driving field through the quantized coefficient η0 ⁣= ⁣ν/2\eta_0\!=\!\nu /\hbar^2. Contrary to the integer quantum Hall effect, this quantized response is found to be non-linear with respect to the strength of the driving field and it explicitly involves inter-band transitions. We investigate the possibility of probing this phenomenon in ultracold gases and highlight the crucial role played by edge states in this effect. We extend our results to 3D lattices, establishing a link between depletion rates and the non-linear photogalvanic effect predicted for Weyl semimetals. The quantized circular dichroism revealed in this work designates depletion-rate measurements as a universal probe for topological order in quantum matter.Comment: 10 pages, 5 figures (including Sup. Mat.). Revised version, accepted for publicatio

    Fault-Tolerant Dissipative Preparation of Atomic Quantum Registers with Fermions

    Full text link
    We propose a fault tolerant loading scheme to produce an array of fermions in an optical lattice of the high fidelity required for applications in quantum information processing and the modelling of strongly correlated systems. A cold reservoir of Fermions plays a dual role as a source of atoms to be loaded into the lattice via a Raman process and as a heat bath for sympathetic cooling of lattice atoms. Atoms are initially transferred into an excited motional state in each lattice site, and then decay to the motional ground state, creating particle-hole pairs in the reservoir. Atoms transferred into the ground motional level are no longer coupled back to the reservoir, and doubly occupied sites in the motional ground state are prevented by Pauli blocking. This scheme has strong conceptual connections with optical pumping, and can be extended to load high-fidelity patterns of atoms.Comment: 12 pages, 7 figures, RevTex

    Creation of a molecular condensate by dynamically melting a Mott-insulator

    Full text link
    We propose creation of a molecular Bose-Einstein condensate (BEC) by loading an atomic BEC into an optical lattice and driving it into a Mott insulator (MI) with exactly two atoms per site. Molecules in a MI state are then created under well defined conditions by photoassociation with essentially unit efficiency. Finally, the MI is melted and a superfluid state of the molecules is created. We study the dynamics of this process and photoassociation of tightly trapped atoms.Comment: minor revisions, 5 pages, 3 figures, REVTEX4, accepted by PRL for publicatio
    corecore