35 research outputs found

    Attention and binding in visual working memory : two forms of attention and two kinds of buffer storage

    Get PDF
    We review our research on the episodic buffer in the multicomponent model of working memory (Baddeley, 2000), making explicit the influence of Anne Treisman’s work on the way our research has developed. The crucial linking theme concerns binding, whereby the individual features of an episode are combined as integrated representations. We summarize a series of experiments on visual working memory that investigated the retention of feature bindings and individual features. The effects of cognitive load, perceptual distraction, prioritization, serial position, and their interactions form a coherent pattern. We interpret our findings as demonstrating contrasting roles of externally driven and internally driven attentional processes, as well as a distinction between visual buffer storage and the focus of attention. Our account has strong links with Treisman’s concept of focused attention and aligns with a number of contemporary approaches to visual working memory

    Sex and APOE: A memory advantage in male APOE ε4 carriers in midlife

    No full text
    Short-term memory in middle-aged individuals with different APOE alleles was examined using a recently developed task which is sensitive to medial temporal lobe damage. Individuals (age-range: 40-51 years) with ε3/ε3, ε3/ε4 and ε4/ε4 APOE genotypes (N=60) performed a delayed estimation task with a sensitive continuous measure of report. The paradigm allowed us to measure memory for items and their locations, as well as maintenance of identity-location feature binding in memory. There was a significant gene-dosage dependent effect of the ε4 allele on performance: memory decay or forgetting was slower in ε4 carriers, as measured by localization error and after controlling for misbinding errors. Furthermore ε4 carriers made less misbinding errors. These findings were specific to male carriers only. Thus, male ε4 carriers are at a behavioral advantage in midlife on a sensitive task of short-term memory. The results would be consistent with an antagonistic pleiotropy hypothesis and highlight the interaction of gender on the influence of APOE in cognition

    Sex and APOE: A memory advantage in male APOE ε4 carriers in midlife

    No full text
    Short-term memory in middle-aged individuals with different APOE alleles was examined using a recently developed task which is sensitive to medial temporal lobe damage. Individuals (age-range: 40-51 years) with ε3/ε3, ε3/ε4 and ε4/ε4 APOE genotypes (N=60) performed a delayed estimation task with a sensitive continuous measure of report. The paradigm allowed us to measure memory for items and their locations, as well as maintenance of identity-location feature binding in memory. There was a significant gene-dosage dependent effect of the ε4 allele on performance: memory decay or forgetting was slower in ε4 carriers, as measured by localization error and after controlling for misbinding errors. Furthermore ε4 carriers made less misbinding errors. These findings were specific to male carriers only. Thus, male ε4 carriers are at a behavioral advantage in midlife on a sensitive task of short-term memory. The results would be consistent with an antagonistic pleiotropy hypothesis and highlight the interaction of gender on the influence of APOE in cognition

    The effect of transcranial random noise stimulation on cognitive training outcome in healthy aging

    Get PDF
    Background and objective: Aging is associated with a decline in attentional and executive abilities, which are linked to physiological, structural, and functional brain changes. A variety of novel noninvasive brain stimulation methods have been probed in terms of their neuroenhancement efficacy in the last decade; one that holds significant promise is transcranial random noise stimulation (tRNS) that delivers an alternate current at random amplitude and frequency. The aim of this study was to investigate whether repeated sessions of tRNS applied as an add-on to cognitive training (CT) may induce long-term near and far transfer cognitive improvements. Methods: In this sham-controlled, randomized, double-blinded study forty-two older adults (age range 60-86 years) were randomly assigned to one of three intervention groups that received 20 min of 0.705mA tRNS (N=14), 1mA tRNS (N=14), or sham tRNS (N=19) combined with 30 min of CT of executive functions (cognitive flexibility, inhibitory control, working memory). tRNS was applied bilaterally over the dorsolateral prefrontal cortices for five sessions. The primary outcome (non-verbal logical reasoning) and other cognitive functions (attention, memory, executive functions) were assessed before and after the intervention and at a one-month follow-up. Results: Non-verbal logical reasoning, inhibitory control and reaction time improved significantly over time, but stimulation did not differentially affect this improvement. These changes occurred during CT, while no further improvement was observed during follow-up. Performance change in logical reasoning was significantly correlated with age in the group receiving 1mA tRNS, indicating that older participants profited more from tRNS than younger participants. Performance change in nonverbal working memory was significantly correlated with age in the group receiving sham tRNS, indicating that in contrast to active tRNS, older participants in the sham group declined more than younger participants. Interpretation: CT induced cognitive improvements in all treatment groups, but tRNS did not modulate most of these cognitive improvements. However, the effect of tRNS depended on age in some cognitive functions. We discuss possible explanations leading to this result that can help to improve the design of future neuroenhancement studies in older populations

    Working memory in Alzheimer's disease and Parkinson's disease

    No full text
    Working memory impairments are frequently observed in patients with Alzheimer's disease (AD) and Parkinson's disease (PD). Recent research suggests that the mechanisms underlying these deficits might be dissociable using sensitive tasks, specifically those that rely on the reproduction of the exact quality of features held in memory.In patients with AD, working memory impairments are mainly due to an increase in misbinding errors. They arise when patients misremember which features (e.g., color, orientation, shape, and location) belong to different objects held in memory. Hence, they erroneously report features that belong to items in memory other than the one they are probed on. This misbinding of features that belong to different objects in memory can be considered a form of interference between stored items. Such binding errors are evident even in presymptomatic individuals with familial AD (due to gene mutations) who do not have AD yet. Overall, these findings are in line with the role of the medial temporal lobes, and specifically the hippocampus, in retention of feature bindings, regardless of retention duration, i.e., in both short- or long-term memory.Patients with PD, on the other hand, do not show increased misbinding. Their working memory deficits are associated with making more random errors or guesses. These random responses are not modulated by manipulations of their dopaminergic medication and hence may reflect involvement of non-dopaminergic neurotransmitters in this deficit. In addition, patients with PD demonstrate impairments in gating of information into relevant vs. irrelevant items in memory, a cognitive operation that is modulated by dopaminergic manipulation in line with a frontal executive effect of this neurotransmitter. Thus, although AD and PD are both associated with working memory impairments, these surface manifestations appear to be underpinned by very different mechanisms
    corecore