6 research outputs found

    Feasibility study of a hand guided robotic drill for cochleostomy

    Get PDF
    The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design

    Mechatronic hand-held surgical robots

    No full text
    This paper describes the considerations leading to a hand-held surgical robot for micro-drilling. The sensing and control schemes are unique, enabling precise control of the tool with respect to tissues and enables preservation of tissues and reduction of tissue trauma. The device has been derived from a robotic tool supported on a fixed arm. The results will show that the method has considerable advantage over existing tools and robotic tools for a range of surgical processes, and that the principles can be applied to other cutting tools

    A smart micro-drill for cochleostomy formation: a comparison of cochlear disturbances with manual drilling and a human trial

    No full text
    Background: Cochleostomy formation is a key stage of the cochlear implantation procedure. Minimizing the trauma sustained by the cochlea during this step is thought to be a critical feature in hearing preservation cochlear implantation. The aim of this paper is firstly, to assess the cochlea disturbances during manual and robotic cochleostomy formation. Secondly, to determine whether the use of a smart micro-drill is feasible during human cochlear implantation. Materials and methods: The disturbances within the cochlea during cochleostomy formation were analysed in a porcine specimen by creating a third window cochleostomy, preserving the underlying endosteal membrane, on the anterior aspect of the basal turn of the cochlea. A laser vibrometer was aimed at this third window, to assess its movement while a traditional cochleostomy was performed. Six cochleostomies were performed in total, three manually and three with a smart micro-drill. The mean and peak membrane movement was calculated for both manual and smart micro-drill arms, to represent the disturbances sustained within cochlea during cochleostomy formation. The smart micro-drill was further used to perform live human robotic cochleostomies on three adult patients who met the National Institute of Health and Clinical Excellence criteria for undergoing cochlear implantation. Results: In the porcine trial, the smart micro-drill preserved the endosteal membrane in all three cases. The velocity of movement of the endosteal membrane during manual cochleostomy is approximately 20 times higher on average and 100 times greater in peak velocity, than for robotic cochleostomy. The robot was safely utilized in theatre in all three cases and successfully created a bony cochleostomy while preserving the underlying endosteal membrane. Conclusions: Our experiments have revealed that controlling the force of drilling during cochleostomy formation and opening the endosteal membrane with a pick will minimize the trauma sustained by the cochlea by a factor of 20. Additionally, the smart micro-drill can safely perform a bony cochleostomy in humans under operative conditions and preserve the integrity of the underlying endosteal membrane

    First study in men evaluating a surgical robotic tool providing autonomous inner ear access for cochlear implantation

    No full text
    Image-guided and robot-assisted surgeries have found their applications in skullbase surgery. Technological improvements in terms of accuracy also opened new opportunities for robotically-assisted cochlear implantation surgery (RACIS). The HEARO(®) robotic system is an otological next-generation surgical robot to assist the surgeon. It first provides software-defined spatial boundaries for orientation and reference information to anatomical structures during otological and neurosurgical procedures. Second, it executes a preplanned drill trajectory through the temporal bone. Here, we report how safe the HEARO procedure can provide an autonomous minimally invasive inner ear access and the efficiency of this access to subsequently insert the electrode array during cochlear implantation. In 22 out of 25 included patients, the surgeon was able to complete the HEARO(®) procedure. The dedicated planning software (OTOPLAN(®)) allowed the surgeon to reconstruct a three-dimensional representation of all the relevant anatomical structures, designate the target on the cochlea, i.e., the round window, and plan the safest trajectory to reach it. This trajectory accommodated the safety distance to the critical structures while minimizing the insertion angles. A minimal distance of 0.4 and 0.3 mm was planned to facial nerve and chorda tympani, respectively. Intraoperative cone-beam CT supported safe passage for the 22 HEARO(®) procedures. The intraoperative accuracy analysis reported the following mean errors: 0.182 mm to target, 0.117 mm to facial nerve, and 0.107 mm to chorda tympani. This study demonstrates that microsurgical robotic technology can be used in different anatomical variations, even including a case of inner ear anomalies, with the geometrically correct keyhole to access to the inner ear. Future perspectives in RACIS may focus on improving intraoperative imaging, automated segmentation and trajectory, robotic insertion with controlled speed, and haptic feedback. This study [Experimental Antwerp robotic research otological surgery (EAR2OS) and Antwerp Robotic cochlear implantation (25 refers to 25 cases) (ARCI25)] was registered at clinicalTrials.gov under identifier NCT03746613 and NCT04102215. CLINICAL TRIAL REGISTRATION: https://www.clinicaltrials.gov, Identifier: NCT04102215

    A New Pathogenic Variant in POU3F4 Causing Deafness Due to an Incomplete Partition of the Cochlea Paved the Way for Innovative Surgery

    No full text
    Incomplete partition type III (IP-III) is a relatively rare inner ear malformation that has been associated with a POU3F4 gene mutation. The IP-III anomaly is mainly characterized by incomplete separation of the modiolus of the cochlea from the internal auditory canal. We describe a 71-year-old woman with profound sensorineural hearing loss diagnosed with an IP-III of the cochlea that underwent cochlear implantation. Via targeted sequencing with a non-syndromic gene panel, we identified a heterozygous c.934G > C p. (Ala31Pro) pathogenic variant in the POU3F4 gene that has not been reported previously. IP-III of the cochlea is challenging for cochlear implant surgery for two main reasons: liquor cerebrospinalis gusher and electrode misplacement. Surgically, it may be better to opt for a shorter array because it is less likely for misplacement with the electrode in a false route. Secondly, the surgeon has to consider the insertion angles of cochlear access very strictly to avoid misplacement along the inner ear canal. Genetic results in well describes genotype-phenotype correlations are a strong clinical tool and as in this case guided surgical planning and robotic execution
    corecore