4 research outputs found

    Clustered Regularly Interspaced Short Palindromic Repeats System of Genome Engineering in Embryos to Repair Genes

    No full text
    CRISPR is a powerful gene editing tool for correcting disese-ausing mutations.It is becoming more and more evident Copyright: American Scientific Publishers that CRISPR is a promising approach to treating human genetic diseases. The technologies for adding or removing Delivered by Ingenta genes have made significant advances over the past few years and have shown promising potential outcomes. In the current study, we mainly introduce the CRISPR/Cas system and there are several applications in the treatment of genetic diseases, particularly during embryo development

    Exosomes: New insights into cancer mechanisms

    No full text
    Exosomes are mobile extracellular vesicles with a diameter 40 to 150 nm. They play a critical role in several processes such as the development of cancers, intercellular signaling, drug resistance mechanisms, and cell-to-cell communication by fusion onto the cell membrane of recipient cells. These vesicles contain endogenous proteins and both noncoding and coding RNAs (microRNA and messenger RNAs) that can be delivered to various types of cells. Furthermore, exosomes exist in body fluids such as plasma, cerebrospinal fluid, and urine. Therefore, they could be used as a novel carrier to deliver therapeutic nucleic-acid drugs for cancer therapy. It was recently documented that, hypoxia promotes exosomes secretion in different tumor types leading to the activation of vascular cells and angiogenesis. Cancer cell-derived exosomes (CCEs) have been used as prognostic and diagnostic markers in many types of cancers because exosomes are stable at 4°C and −70°C. CCEs have many functional roles in tumorigenesis, metastasis, and invasion. Consequently, this review presents the data about the therapeutic application of exosomes and the role of CCEs in cancer invasion, drug resistance, and metastasis

    Exosomes: New insights into cancer mechanisms

    No full text
    Exosomes are mobile extracellular vesicles with a diameter 40 to 150 nm. They play a critical role in several processes such as the development of cancers, intercellular signaling, drug resistance mechanisms, and cell-to-cell communication by fusion onto the cell membrane of recipient cells. These vesicles contain endogenous proteins and both noncoding and coding RNAs (microRNA and messenger RNAs) that can be delivered to various types of cells. Furthermore, exosomes exist in body fluids such as plasma, cerebrospinal fluid, and urine. Therefore, they could be used as a novel carrier to deliver therapeutic nucleic-acid drugs for cancer therapy. It was recently documented that, hypoxia promotes exosomes secretion in different tumor types leading to the activation of vascular cells and angiogenesis. Cancer cell-derived exosomes (CCEs) have been used as prognostic and diagnostic markers in many types of cancers because exosomes are stable at 4°C and −70°C. CCEs have many functional roles in tumorigenesis, metastasis, and invasion. Consequently, this review presents the data about the therapeutic application of exosomes and the role of CCEs in cancer invasion, drug resistance, and metastasis
    corecore