1,649 research outputs found

    Recent ASDEX Upgrade research in support of ITER and DEMO

    Get PDF

    Forced Rotation of Tearing Modes by Time Varying RMP Fields

    Get PDF

    21st IAEA Fusion Energy Conference: Summary of Sessions EX/D, EX/S and EX/W

    No full text

    Bayesian analysis of magnetic island dynamics

    Get PDF
    We examine a first order differential equation with respect to time coming up in the description of magnetic islands in magnetically confined plasmas. The free parameters of this equation are obtained by employing Bayesian probability theory. Additionally a typical Bayesian change point is solved in the process of obtaining the data.Comment: 10 pages, 4 figures, submitted to be included in MaxEnt 2002 proceeding

    Assessment of DEMO challenges in technology and physics

    No full text

    Burn-up fraction and inventory of a fusion reactor

    Get PDF

    Power Exhaust in Next-Step Fusion Devices

    Get PDF

    Recent ASDEX Upgrade research in support of ITER and DEMO

    Get PDF
    Recent experiments on the ASDEX Upgrade tokamak aim at improving the physics base for ITER and DEMO to aid the machine design and prepare efficient operation. Type I edge localized mode (ELM) mitigation using resonant magnetic perturbations (RMPs) has been shown at low pedestal collisionality ( ν ∗ ped < 0 . 4 ) . In contrast to the previous high ν ∗ regime, suppression only occurs in a narrow RMP spectral window, indicating a resonant process, and a concomitant confinement drop is observed due to a reduction of pedestal top density and electron temperature. Strong evidence is found for the ion heat flux to be the decisive element for the L–H power threshold. A physics based scaling of the density at which the minimum P LH occurs indicates that ITER could take advantage of it to initiate H-mode at lower density than that of the final Q = 10 operational point. Core density fluctuation measurements resolved in radius and wave number show that an increase of R/L T e introduced by off-axis electron cyclotron resonance heating (ECRH) mainly increases the large scale fluctuations. The radial variation of the fluctuation level is in agreement with simulations using the GENE code. Fast particles are shown to undergo classical slowing down in the absence of large scale magnetohydrodynamic (MHD) events and for low heating power, but show signs of anomalous radial redistribution at large heating power, consistent with a broadened off-axis neutral beam current drive current profile under these conditions. Neoclassical tearing mode (NTM) suppression experiments using electron cyclotron current drive (ECCD) with feedback controlled deposition have allowed to test several control strategies for ITER, including automated control of (3,2) and (2,1) NTMs during a single discharge. Disruption mitigation studies using massive gas injection (MGI) can show an increased fuelling efficiency with high field side injection, but a saturation of the fuelling efficiency is observed at high injected mass as needed for runaway electron suppression. Large locked modes can significantly decrease the fuelling efficiency and increase the asymmetry of radiated power during MGI mitigation. Concerning power exhaust, the partially detached ITER divertor scenario has been demonstrated at P sep /R = 10 MW m − 1 in ASDEX Upgrade, with a peak time averaged target load around 5MWm − 2 , well consistent with the component limits for ITER. Developing this towards DEMO, full detachment was achieved at P sep /R = 7MWm − 1 and stationary discharges with core radiation fraction of the order of DEMO requirements (70% instead of the 30% needed for ITER) were demonstrated. Finally, it remains difficult to establish the standard ITER Q = 10 scenario at low q 95 = 3 in the all-tungsten (all-W) ASDEX Upgrade due to the observed poor confinement at low β N . This is mainly due to a degraded pedestal performance and hence investigations at shifting the operational point to higher β N by lowering the current have been started. At higher q 95 , pedestal performance can be recovered by seeding N 2 as well as CD 4 , which is interpreted as improved pedestal stability due to the decrease of bootstrap current with increasing Z eff . Concerning advanced scenarios, the upgrade of ECRH power has allowed experiments with central ctr-ECCD to modify the q -profile in improved H-mode scenarios, showing an increase in confinement at still good MHD stability with flat elevated q -profiles at values between 1.5 and 2.European Commission (EUROfusion 633053
    • …
    corecore