3,537 research outputs found

    Combining Tensor Networks with Monte Carlo Methods for Lattice Gauge Theories

    Full text link
    Gauged gaussian Projected Entangled Pair States are particular tensor network constructions that describe lattice states of fermionic matter interacting with dynamical gauge fields. We show how one can efficiently compute, using Monte-Carlo techniques, expectation values of physical observables in that class of states. This opens up the possibility of using tensor network techniques to investigate lattice gauge theories in two and three spatial dimensions

    Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical Lattices

    Full text link
    Can high energy physics be simulated by low-energy, non-relativistic, many-body systems, such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective, low energy, symmetry, or as an "exact" symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to new type of (table-top) experiments, that shall be used to study various QCD phenomena, as the confinement of dynamical quarks, phase transitions, and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing quantum simulation of Abelian and non-Abelian lattice gauge theories in 1+1 and 2+1 dimensions using ultracold atoms in optical lattices.Comment: A review; 55 pages, 14 figure

    Simulating 2+1d Lattice QED with dynamical matter using ultracold atoms

    Full text link
    We suggest a method to simulate lattice compact Quantum Electrodynamics (cQED) using ultracold atoms in optical lattices, which includes dynamical Dirac fermions in 2+1 dimensions. This allows to test dynamical effects of confinement as well as 2d flux loops deformations and breaking, and to observe Wilson-loop area-law.Comment: Includes supplementary material. Added references, minor modification

    Digital lattice gauge theories

    Full text link
    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2+12+1 dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3\mathbb{Z}_{3} lattice gauge theory with dynamical fermionic matter in 2+12+1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way

    Digital quantum simulation of lattice gauge theories in three spatial dimensions

    Full text link
    In the present work, we propose a scheme for digital formulation of lattice gauge theories with dynamical fermions in 3+1 dimensions. All interactions are obtained as a stroboscopic sequence of two-body interactions with an auxiliary system. This enables quantum simulations of lattice gauge theories where the magnetic four-body interactions arising in two and more spatial dimensions are obtained without the use of perturbation theory, thus resulting in stronger interactions compared with analogue approaches. The simulation scheme is applicable to lattice gauge theories with either compact or finite gauge groups. The required bounds on the digitization errors in lattice gauge theories, due to the sequential nature of the stroboscopic time evolution, are provided. Furthermore, an implementation of a lattice gauge theory with a non-abelian gauge group, the dihedral group D3D_{3}, is proposed employing the aforementioned simulation scheme using ultracold atoms in optical lattices.Comment: 38 pages, 5 figure

    Non-Abelian string breaking phenomena with Matrix Product States

    Get PDF
    Using matrix product states, we explore numerically the phenomenology of string breaking in a non-Abelian lattice gauge theory, namely 1+1 dimensional SU(2). The technique allows us to study the static potential between external heavy charges, as traditionally explored by Monte Carlo simulations, but also to simulate the real-time dynamics of both static and dynamical fermions, as the latter are fully included in the formalism. We propose a number of observables that are sensitive to the presence or breaking of the flux string, and use them to detect and characterize the phenomenon in each of these setups.Comment: 20+5 pages, 14 figures, version 2 contains more numerical results, version 3: published versio

    Determining topological order from a local ground state correlation function

    Full text link
    Topological insulators are physically distinguishable from normal insulators only near edges and defects, while in the bulk there is no clear signature to their topological order. In this work we show that the Z index of topological insulators and the Z index of the integer quantum Hall effect manifest themselves locally. We do so by providing an algorithm for determining these indices from a local equal time ground-state correlation function at any convenient boundary conditions. Our procedure is unaffected by the presence of disorder and can be naturally generalized to include weak interactions. The locality of these topological indices implies bulk-edge correspondence theorem.Comment: 7 pages, 3 figures. Major changes: the paper was divided into sections, the locality of the order in 3D topological insulators is also discusse

    Arbitrary Dimensional Majorana Dualities and Network Architectures for Topological Matter

    Get PDF
    Motivated by the prospect of attaining Majorana modes at the ends of nanowires, we analyze interacting Majorana systems on general networks and lattices in an arbitrary number of dimensions, and derive various universal spin duals. Such general complex Majorana architectures (other than those of simple square or other crystalline arrangements) might be of empirical relevance. As these systems display low-dimensional symmetries, they are candidates for realizing topological quantum order. We prove that (a) these Majorana systems, (b) quantum Ising gauge theories, and (c) transverse-field Ising models with annealed bimodal disorder are all dual to one another on general graphs. As any Dirac fermion (including electronic) operator can be expressed as a linear combination of two Majorana fermion operators, our results further lead to dualities between interacting Dirac fermionic systems. The spin duals allow us to predict the feasibility of various standard transitions as well as spin-glass type behavior in {\it interacting} Majorana fermion or electronic systems. Several new systems that can be simulated by arrays of Majorana wires are further introduced and investigated: (1) the {\it XXZ honeycomb compass} model (intermediate between the classical Ising model on the honeycomb lattice and Kitaev's honeycomb model), (2) a checkerboard lattice realization of the model of Xu and Moore for superconducting (p+ip)(p+ip) arrays, and a (3) compass type two-flavor Hubbard model with both pairing and hopping terms. By the use of dualities, we show that all of these systems lie in the 3D Ising universality class. We discuss how the existence of topological orders and bounds on autocorrelation times can be inferred by the use of symmetries and also propose to engineer {\it quantum simulators} out of these Majorana networks.Comment: v3,19 pages, 18 figures, submitted to Physical Review B. 11 new figures, new section on simulating the Hubbard model with nanowire systems, and two new appendice

    Type 1 2HDM as effective theory of supersymmetry

    Full text link
    It is generally believed that the low energy effective theory of the minimal supersymmetric standard model is the type 2 two Higgs doublet model. We will show that the type 1 two Higgs doublet model can also as the effective of supersymmetry in a specific case with high scale supersymmetry breaking and gauge mediation. If the other electroweak doublet obtain the vacuum expectation value after the electroweak symmetry breaking, the Higgs spectrum is quite different. A remarkable feature is that the physical Higgs boson mass can 125 GeV unlike in the ordinary models with high scale supersymmetry in which the Higgs mass is generally around 140 GeV.Comment: 11 pages, 3 figures, Published in Commun.Theor.Phy
    corecore