27 research outputs found

    Unraveling the epigenetic fabric of type 2 diabetes mellitus: pathogenic mechanisms and therapeutic implications

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a rapidly escalating global health concern, with its prevalence projected to increase significantly in the near future. This review delves into the intricate role of epigenetic modifications - including DNA methylation, histone acetylation, and micro-ribonucleic acid (miRNA) expression - in the pathogenesis and progression of T2DM. We critically examine how these epigenetic changes contribute to the onset and exacerbation of T2DM by influencing key pathogenic processes such as obesity, insulin resistance, β-cell dysfunction, cellular senescence, and mitochondrial dysfunction. Furthermore, we explore the involvement of epigenetic dysregulation in T2DM-associated complications, including diabetic retinopathy, atherosclerosis, neuropathy, and cardiomyopathy. This review highlights recent studies that underscore the diagnostic and therapeutic potential of targeting epigenetic modifications in T2DM. We also provide an overview of the impact of lifestyle factors such as exercise and diet on the epigenetic landscape of T2DM, underscoring their relevance in disease management. Our synthesis of the current literature aims to illuminate the complex epigenetic underpinnings of T2DM, offering insights into novel preventative and therapeutic strategies that could revolutionize its management

    Synthesis of Boron-Doped Zinc Oxide Nanosheets by Using Phyllanthus Emblica Leaf Extract: A Sustainable Environmental Applications

    Get PDF
    The use of Phyllanthus emblica (gooseberry) leaf extract to synthesize Boron-doped zinc oxide nanosheets (B-doped ZnO-NSs) is deliberated in this article. Scanning electron microscopy (SEM) shows a network of synthesized nanosheets randomly aligned side by side in a B-doped ZnO (15 wt% B) sample. The thickness of B-doped ZnO-NSs is in the range of 20–80 nm. B-doped ZnO-NSs were tested against both gram-positive and gram-negative bacterial strains including Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli. Against gram-negative bacterium (K. pneumonia and E. coli), B-doped ZnO displays enhanced antibacterial activity with 26 and 24 mm of inhibition zone, respectively. The mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), mean free path (MFP), half-value layer (HVL), and tenth value layer (TVL) of B-doped ZnO were investigated as aspects linked to radiation shielding. These observations were carried out by using a PTW® electron detector and VARIAN® irradiation with 6 MeV electrons. The results of these experiments can be used to learn more about the radiation shielding properties of B-doped ZnO nanostructures

    Enhancing Emergency Vehicle Detection: A Deep Learning Approach with Multimodal Fusion

    No full text
    Emergency vehicle detection plays a critical role in ensuring timely responses and reducing accidents in modern urban environments. However, traditional methods that rely solely on visual cues face challenges, particularly in adverse conditions. The objective of this research is to enhance emergency vehicle detection by leveraging the synergies between acoustic and visual information. By incorporating advanced deep learning techniques for both acoustic and visual data, our aim is to significantly improve the accuracy and response times. To achieve this goal, we developed an attention-based temporal spectrum network (ATSN) with an attention mechanism specifically designed for ambulance siren sound detection. In parallel, we enhanced visual detection tasks by implementing a Multi-Level Spatial Fusion YOLO (MLSF-YOLO) architecture. To combine the acoustic and visual information effectively, we employed a stacking ensemble learning technique, creating a robust framework for emergency vehicle detection. This approach capitalizes on the strengths of both modalities, allowing for a comprehensive analysis that surpasses existing methods. Through our research, we achieved remarkable results, including a misdetection rate of only 3.81% and an accuracy of 96.19% when applied to visual data containing emergency vehicles. These findings represent significant progress in real-world applications, demonstrating the effectiveness of our approach in improving emergency vehicle detection systems

    On the partition dimension of circulant graph Cn(1, 2, 3, 4)

    No full text
    Let Λ = {B1,B2, . . . ,Bl} be an ordered l-partition of a connectedgraph G(V (G),E(G)). The partition representation of vertex x withrespect to Λ is the l-vector, r(x|Λ) = (d(x,B1), d(x,B2), . . . , d(x,Bl)), whered(x,B) = min{d(x, y)|y ∈ B} is the distance between x and B. If the l -vectors r(x|Λ), for all x ∈ V (G) are distinct then l - partition is called aresolving partition. The least value of l for which there is a resolving l - partitionis known as the partition dimension of G symbolized as pd(G). In thispaper, the partition dimension of circulant graphs Cn(1, 2, 3, 4) is computedfor n ≥ 8 as

    A novel method for creating an optimized ensemble classifier by introducing cluster size reduction and diversity

    No full text
    In this paper, a new method is proposed for creating an optimized ensemble classifier. The proposed method mitigates the issue of class imbalances by partitioning the input data into its various data classes. The partitions are then clustered incrementally to generate a pool of class pure data clusters. The generated data clusters are then balanced by adding samples from all classes which are closest to the cluster centroid. In this manner all generated data clusters are balanced and classifiers trained on such a data cluster are unbiased as well. This creates a diverse input space for training of base classifiers. The pool of clusters is then utilized to train a set of diverse base classifiers to generate the base classifier pool. The pool of classifiers is then treated as a combinatorial problem of optimization and an evolutionary algorithm is incorporated. The proposed approach generates an optimized ensemble classifier that can not only achieve the highest classification accuracy but also has a lower component size as well. The proposed approach is tested on 31 benchmark datasets from UCI machine learning repository and results are compared with existing state-of-the-art ensemble classifiers as well

    A comprehensive review on the synthesis of substituted piperazine and its novel bio-medicinal applications

    No full text
    Piperazine is two nitrogen containing heterocyclic compound. The fundamental activity of the piperazine is due to the 1,4-position of nitrogen atoms and their substitutions. The SN1 reaction is followed by the others alkylation and substitution reactions. Substituted piperazine derivatives hold an important position for the development of crucial drugs. They exhibit a broad spectrum of biological activities e.g. antitubercular, antibacterial, anti-inflammatory, anticancer, antiviral, antidiabetic and antimalarial. Immense numbers of biological activities displayed by disubstituted piperazine derivatives are due to the presence of two nitrogen atoms in the ring. Keeping in mind their biological activity profile, a series of novel 1,4-substituted piperazine synthesized derivatives were collected. All the prepared derivatives are expected to show different biological activities particularly enzyme inhibition activities against α-Amylase

    Protease inhibition, in vitro antibacterial and IFD/MM-GBSA studies of ciprofloxacin-based acetanilides.

    No full text
    In this study, we have investigated ciprofloxacin-based acetanilides for their in-vitro inhibitory study against gram +ve, -ve bacteria and serine protease activity. The compounds 4e and 4g showed excellent antibacterial activity against Bacillus subtilis with a zone of inhibition (ZI) values of 40 ± 0.9 mm, 37 ± 1.4 mm and with MIC values of 4.0 ± 0.78 mg/mL, 3.0 ± 0.98 mg/ML respectively, while 4a and 4i were found most active against Escherichia coli, with ZI values 38 ± 0.1 mm, 46 ± 1.8 mm and with MIC values of 1.0 ± 0.25 mg/mL, 1.0 ± 0.23 mg/mL respectively. All derivatives (4a-j) significantly inhibited the catalytic activity of serine protease, while 4a exhibited a maximum (100%) inhibitory effect at 96 minutes having 22.50 minutes [Formula: see text], and non-competitive inhibition with 0.1±0.00μM Ki. The IFD/MM-GBSA studies highlighted the binding mode of 4a for protease inhibition and indicated improved binding affinity with -107.62 kcal/mol of ΔGbind

    Effective Voting Ensemble of Homogenous Ensembling with Multiple Attribute-Selection Approaches for Improved Identification of Thyroid Disorder

    No full text
    Thyroid disease is characterized by abnormal development of glandular tissue on the periphery of the thyroid gland. Thyroid disease occurs when this gland produces an abnormally high or low level of hormones, with hyperthyroidism (active thyroid gland) and hypothyroidism (inactive thyroid gland) being the two most common types. The purpose of this work was to create an efficient homogeneous ensemble of ensembles in conjunction with numerous feature-selection methodologies for the improved detection of thyroid disorder. The dataset employed is based on real-time thyroid information obtained from the District Head Quarter (DHQ) teaching hospital, Dera Ghazi (DG) Khan, Pakistan. Following the necessary preprocessing steps, three types of attribute-selection strategies; Select From Model (SFM), Select K-Best (SKB), and Recursive Feature Elimination (RFE) were used. Decision Tree (DT), Gradient Boosting (GB), Logistic Regression (LR), and Random Forest (RF) classifiers were used as promising feature estimators. The homogeneous ensembling activated the bagging- and boosting-based classifiers, which were then classified by the Voting ensemble using both soft and hard voting. Accuracy, sensitivity, mean square error, hamming loss, and other performance assessment metrics have been adopted. The experimental results indicate the optimum applicability of the proposed strategy for improved thyroid ailment identification. All of the employed approaches achieved 100% accuracy with a small feature set. In terms of accuracy and computational cost, the presented findings outperformed similar benchmark models in its domain

    Chitinase of Trichoderma longibrachiatum for control of Aphis gossypii in cotton plants

    No full text
    Abstract Chitinase-producing fungi have now engrossed attention as one of the potential agents for the control of insect pests. Entomopathogenic fungi are used in different regions of the world to control economically important insects. However, the role of fungal chitinases are not well studied in their infection mechanism to insects. In this study, Chitinase of entomopathogenic fungi Trichoderma longibrachiatum was evaluated to control Aphis gossypii. For this purpose, fungal chitinase (Chit1) gene from the genomic DNA of T. longibrachiatum were isolated, amplified and characterised. Genomic analysis of the amplified Chit1 showed that this gene has homology to family 18 of glycosyl hydrolyses. Further, Chit1 was expressed in the cotton plant for transient expression through the Geminivirus-mediated gene silencing vector derived from Cotton Leaf Crumple Virus (CLCrV). Transformed cotton plants showed greater chitinase activity than control, and they were resistant against nymphs and adults of A. gossypii. About 38.75% and 21.67% mortality of both nymphs and adults, respectively, were observed by using Chit1 of T. longibrachiatum. It is concluded that T. longibrachiatum showed promising results in controlling aphids by producing fungal chitinase in cotton plants and could be used as an effective method in the future

    Ultrasound-Assisted Synthesis and In Silico Modeling of Methanesulfonyl-Piperazine-Based Dithiocarbamates as Potential Anticancer, Thrombolytic, and Hemolytic Structural Motifs

    No full text
    Piperazine-based dithiocarbamates serve as important scaffolds for numerous pharmacologically active drugs. The current study investigates the design and synthesis of a series of dithiocarbamates with a piperazine unit as well as their biological activities. Under ultrasound conditions, the corresponding piperazine-1-carbodithioates 5a–5j were synthesized from monosubstituted piperazine 2 and N-phenylacetamides 4a–4j in the presence of sodium acetate and carbon disulfide in methanol. The structures of the newly synthesized piperazines were confirmed, and their anti-lung carcinoma effects were evaluated. A cytotoxic assay was performed to assess the hemolytic and thrombolytic potential of the synthesized piperazines 5a–5j. The types of substituents on the aryl ring were found to affect the anticancer activity of piperazines 5a–5j. Piperazines containing 2-chlorophenyl (5b; cell viability = 25.11 ± 2.49) and 2,4-dimethylphenyl (5i; cell viability = 25.31 ± 3.62) moieties demonstrated the most potent antiproliferative activity. On the other hand, piperazines containing 3,4-dichlorophenyl (5d; 0.1%) and 3,4-dimethylphenyl (5j; 0.1%) rings demonstrated the least cytotoxicity. The piperazine with the 2,5-dimethoxyphenyl moiety (5h; 60.2%) showed the best thrombolytic effect. To determine the mode of binding, in silico modeling of the most potent piperazine (i.e., 5b) was performed, and the results were in accordance with those of antiproliferation. It exhibits a similar binding affinity to PQ10 and an efficient conformational alignment with the lipophilic site of PDE10A conserved for PQ10A
    corecore