33 research outputs found

    Inhibitor design for ribonuclease A: the binding of two 5'-phosphate uridine analogues

    No full text
    In the quest for the rational design of selective and potent inhibitors for members of the pancreatic ribonuclease A (RNase A) family of biomedical interest, the binding of uridine 5'-phosphate (U5P) and uridine 5'-diphosphate (UDP) to RNase A have been investigated using kinetic studies and X-ray crystallography. Both nucleotides are competitive inhibitors of the enzyme, with Ki values of 4.0 and 0.65 mM, respectively. They bind to the active site of the enzyme by anchoring two molecules connected to each other by hydrogen bonds and van der Waals interactions. While the first of the inhibitor molecules binds with its nucleobase in the pyrimidinyl-binding subsite, the second is bound at the purine-preferring subsite. The unexpected binding of a pyrimidine at the purine-binding subsite has added new important elements to the rational design approach for the discovery of new potent inhibitors of the RNase A superfamily

    Amide-1,2,3-triazole bioisosterism: the glycogen phosphorylase case

    No full text
    Per-O-acetylatedb-D-glucopyranosyl azide was transformed into an intermediate iminophosphorane byPMe3which was then acylated toN-acyl-b-D-glucopyranosylamines. The same azide and substitutedacetylenes gave 1-(b-D-glucopyranosyl)-4-substituted-1,2,3-triazoles in Cu(I)-catalyzed azide–alkynecycloadditions. Deprotection of these products by the Zemplén method furnishedb-D-Glcp-NHCO-Rderivatives as well as 1-(b-D-Glcp)-4-R-1,2,3-triazoles which were evaluated as inhibitors of rabbit mus-cle glycogen phosphorylase b. Pairs of amides versus triazoles with the same R group displayed similarinhibition constants. X-ray crystallographic studies on the enzyme–inhibitor complexes revealed highsimilarities in the binding of pairs with R = 2-naphthyl and hydroxymethyl, while for the R = Ph and 1-naphthyl compounds a different orientation of the aromatic part and changes in the conformation ofthe 280s loop were observed. By this study new examples of amide-1,2,3-triazole bioisosteric relation-ship have been provide

    Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents

    No full text
    Insect odorant binding proteins (OBPs) are the first components of the olfactory system to encounter and bind attractant and repellent odors emanating from various sources for presentation to olfactory receptors, which trigger relevant signal transduction cascades culminating in specific physiological and behavioral responses. For disease vectors, particularly hematophagous mosquitoes, repellents represent important defenses against parasitic diseases because they effect a reduction in the rate of contact between the vectors and humans. OBPs are targets for structure-based rational approaches for the discovery of new repellent or other olfaction inhibitory compounds with desirable features. Thus, a study was conducted to characterize the high resolution crystal structure of an OBP of Anopheles gambiae, the African malaria mosquito vector, in complex with N,N-diethyl-m-toluamide (DEET), one of the most effective repellents that has been in worldwide use for six decades. We found that DEET binds at the edge of a long hydrophobic tunnel by exploiting numerous non-polar interactions and one hydrogen bond, which is perceived to be critical for DEET's recognition. Based on the experimentally determined affinity of AgamOBP1 for DEET (K (d) of 31.3 mu Ie) and our structural data, we modeled the interactions for this protein with 29 promising leads reported in the literature to have significant repellent activities, and carried out fluorescence binding studies with four highly ranked ligands. Our experimental results confirmed the modeling predictions indicating that structure-based modeling could facilitate the design of novel repellents with enhanced binding affinity and selectivity

    POTENT INHIBITION OF GLYCOGEN-PHOSPHORYLASE BY A SPIROHYDANTOIN OF GLUCOPYRANOSE - FIRST PYRANOSE ANALOGS OF HYDANTOCIDIN

    No full text
    The synthesis of two epimeric spirohydantoins of glucopyranose provides the first examples of pyranose analogues of hydantocidin: molecular modelling correctly predicted that one of the epimers would be a potent inhibitor of glycogen phosphorylase. This is the first example of specific enzyme inhibition by a spirohydantoin at the anomeric position of a sugar. © 1995

    Halogen-substituted (C-beta-D-glucopyranosyl)-hydroquinone regioisomers: Synthesis, enzymatic evaluation and their binding to glycogen phosphorylase

    No full text
    Electrophilic halogenation of C-(2,3,4,6-tetra-O-acetyl-b-D-glucopyranosyl) 1,4-dimethoxybenzene (1) afforded regioselectively products halogenated at the para position to the D-glucosyl moiety (8, 9) that were deacetylated to 3 (chloride) and 16 (bromide). For preparing meta regioisomers, 1 was efficiently oxidized with CAN to afford C-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl) 1,4-benzoquinone 2 which, in either MeOH or H2O-THF containing few equivalents of AcCl, added hydrochloric acid to produce predominantly meta (with respect to the sugar moiety) chlorinated hydroquinone derivatives 5 and 18, this latter being deacetylated to 4. The deacetylated meta (4, 5) or para (3, 16) halohydroquinones were evaluated as inhibitors of glycogen phosphorylase (GP, a molecular target for inhibition of hepatic glycogenolysis under high glucose concentrations) by kinetics and X-ray crystallography. These compounds are competitive inhibitors of GPb with respect to alpha-D-glucose-1-phosphate. The measured IC50 values (mu M) [169.9 +/- 10.0 (3), 95 (4), 39.8 +/- 0.3 (5) 136.4 +/- 4.9 (16)] showed that the meta halogenated inhibitors (4, 5) are more potent than their para analogs (3, 16). The crystal structures of GPb in complex with these compounds at high resolution (1.97-2.05 angstrom) revealed that the inhibitors are accommodated at the catalytic site and stabilize the T conformation of the enzyme. The differences in their inhibitory potency can be interpreted in terms of variations in the interactions with protein residues of the different substituents on the aromatic part of the inhibitors. (C) 2011 Elsevier Ltd. All rights reserved

    Effects of commonly used cryoprotectants on glycogen phosphorylase activity and structure.

    No full text
    The effects of a number of cryoprotectants on the kinetic and structural properties of glycogen phosphorylase b have been investigated. Kinetic studies showed that glycerol, one of the most commonly used cryoprotectants in X-ray crystallographic studies, is a competitive inhibitor with respect to substrate glucose-1-P with an apparent Ki value of 3.8% (v/v). Cryogenic experiments, with the enzyme, have shown that glycerol binds at the catalytic site and competes with glucose analogues that bind at the catalytic site, thus preventing the formation of complexes. This necessitated a change in the conditions for cryoprotection in crystallographic binding experiments with glycogen phosphorylase. It was found that 2-methyl-2,4-pentanediol (MPD), polyethylene glycols (PEGs) of various molecular weights, and dimethyl sulfoxide (DMSO) activated glycogen phosphorylase b to different extents, by stabilizing its most active conformation, while sucrose acted as a noncompetitive inhibitor and ethylene glycol as an uncompetitive inhibitor with respect to glucose-1-P. A parallel experimental investigation by X-ray crystallography showed that, at 100 K, both MPD and DMSO do not bind at the catalytic site, do not induce any significant conformational change on the enzyme molecule, and hence, are more suitable cryoprotectants than glycerol for binding studies with glycogen phosphorylase

    1-(3-Deoxy-3-fluoro-beta-D-glucopyranosyl) pyrimidine derivatives as inhibitors of glycogen phosphorylase b: Kinetic, crystallographic and modelling studies.

    No full text
    Design of inhibitors of glycogen phosphorylase (GP) with pharmaceutical applications in improving glycaemic control in type 2 diabetes is a promising therapeutic strategy. The catalytic site of muscle glycogen phosphorylase b (GPb) has been probed with five deoxy-fluro-glucose derivatives. These inhibitors had fluorine instead of hydroxyl at the 3' position of the glucose moiety and a variety of pyrimidine derivatives at the 1' position. The best of this carbohydrate-based family of five inhibitors displays a K(i) value of 46muM. To elucidate the mechanism of inhibition for these compounds, the crystal structures of GPb in complex with each ligand were determined and refined to high resolution. The structures demonstrated that the inhibitors bind preferentially at the catalytic site and promote the less active T state conformation of the enzyme by making several favorable contacts with residues of the 280s loop. Fluorine is engaged in hydrogen bond interactions but does not improve glucose potency. The pyrimidine groups are located between residues 284-286 of the 280s loop, Ala383 of the 380s loop, and His341 of the beta-pocket. These interactions appear important in stabilizing the inactive quaternary T state of the enzyme. As a follow up to recent computations performed on beta-d-glucose pyrimidine derivatives, tautomeric forms of ligands 1-5 were considered as potential binding states. Using Glide-XP docking and QM/MM calculations, the ligands 2 and 5 are predicted to bind in different tautomeric states in their respective GPb complexes. Also, using alpha-d-glucose as a benchmark model, a series of substitutions for glucose -OH at the 3' (equatorial) position were investigated for their potential to improve the binding affinity of glucose-based GPb catalytic site inhibitors. Glide-XP and quantum mechanics polarized ligand (QPLD-SP/XP) docking calculations revealed favorable binding at this position to be dominated by hydrogen bond contributions; none of the substitutions (including fluorine) out-performed the native -OH substituent which can act both as hydrogen bond donor and acceptor. The structural analyses of these compounds can be exploited towards the development of better inhibitors
    corecore