18 research outputs found

    Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt.

    Get PDF
    BACKGROUND: The Polaris valve is a newly released hydrocephalus shunt that is designed to drain cerebrospinal fluid (CSF) from the brain ventricles or lumbar CSF space. The aim of this study was to bench test the properties of the Polaris shunt, independently of the manufacturer. METHODS: The Polaris Valve is a ball-on-spring valve, which can be adjusted magnetically in vivo. A special mechanism is incorporated to prevent accidental re-adjustment by an external magnetic field. The performance and hydrodynamic properties of the valve were evaluated in the UK Shunt Evaluation Laboratory, Cambridge, UK. RESULTS: The three shunts tested showed good mechanical durability over the 3-month period of testing, and a stable hydrodynamic performance over 45 days. The pressure-flow performance curves, operating, opening and closing pressures were stable. The drainage rate of the shunt increased when a negative outlet pressure (siphoning) was applied. The hydrodynamic parameters fell within the limits specified by the manufacturer and changed according to the five programmed performance levels. Hydrodynamic resistance was dependant on operating pressure, changing from low values of 1.6 mmHg/ml/min at the lowest level to 11.2 mmHg/ml/min at the highest performance level. External programming proved to be easy and reliable. Even very strong magnetic fields (3 Tesla) were not able to change the programming of the valve. However, distortion of magnetic resonance images was present. CONCLUSION: The Polaris Valve is a reliable, adjustable valve. Unlike other adjustable valves (except the Miethke ProGAV valve), the Polaris cannot be accidentally re-adjusted by an external magnetic field.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Observational study of intracranial pressure instability in patients with pseudotumour cerebri syndrome

    No full text
    Introduction: A fixed CSF pressure (CSFp) of 25 cmH2O (18 mmHg) has been utilised to date to define and classify pseudotumour cerebri syndrome (PTCS). Furthermore, ICP monitoring, and CSF infusion tests have not been frequently performed in this group of patients. Research question: We aimed to report typical, unusual and unstable patterns of ICP in patients with PTCS. Material and methods: We reviewed the recordings of CSF infusion tests and overnight ICP monitoring of patients with suspected or confirmed IIH between January 2003–December 2020.We excluded all patients with a shunt in situ and selected recordings that represented unstable patterns of ICP changes in PTCS. Results: 463 CSF infusion tests and 26 ICP monitorings of PTCS patients had been performed in this timeframe. We divided results of observed pattern into two group: those with known venous sinus measurements (Group A) and those without (Group B). Observed recordings formed a total of 5 and 4 different patterns respectively, based on the behaviour of ICP and slow waves at rest, overnight, and during infusion as well as in relationship to the clinical presentation of each patient. Discussion and conclusion: Accurate monitoring of ICP in PTCS is quintessential. Full understanding of each element of its pathophysiology and their interaction would be essential and include quantification of the CSF pressure not only as a number, but also with consideration of its dynamic contents. Cerebral venous pressure measurements and/or monitoring may be useful. Consideration of the presence or absence of papilloedema in the context of disturbed CSF dynamics could reveal further diagnostic and therapeutic insights
    corecore