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Abstract
Objective Pseudotumour cerebri syndrome (PTCS including idiopathic intracranial hypertension) is characterised by the symp-
toms and signs of raised cerebrospinal fluid pressure (CSFp) in the absence of ventricular dilatation or an intracranial mass lesion.
Its aetiology is unknown in the majority of cases but there is much evidence for impaired CSF absorption. Traditionally, sagittal
sinus pressure has been considered to be independent of CSF pressure in adults. However, the discovery of stenoses of intra-
cranial venous sinuses and introduction of venous sinus stenting has highlighted the importance of the venous drainage in PTCS.
In this study, we have explored the relationship between CSFp and SSp before and during a CSF infusion test and during CSF
drainage.
Materials and methods Ten patients (9 females:1 male) with PTCS underwent infusion studies in parallel with direct retrograde
cerebral venography. Both SSp and CSFp were recorded at a baseline and during CSFp elevation in a course of a CSF infusion
test. The drainage of CSF after the CSF infusion was performed in 7 patients. In 5 cases, jugular venous pressure was also
measured.
Results CSFp and SSp including their amplitudes correlated significantly and strongly both at baseline (R = 0.96; p = 0.001) and
during infusion (R = 0.92; p = 0.0026). During drainage, this correlation was maintained until SSp reached a stable value,
whereas CSFp continued to decrease.
Conclusions In this series of ten patients with PTCS, CSFp and SSp were coupled, both at baseline and during infusion. The
implications of such coupling for the calculation of CSF outflow resistance are discussed.
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Introduction

Pseudotumour cerebri syndrome (PTCS) is characterised by
the symptoms and signs of raised cerebrospinal fluid pressure
(CSFp) in the absence of ventricular dilatation or an intracra-
nial mass lesion and often without a known aetiology [10, 15,
16, 27, 28]. It mostly affects women of reproductive age with
an increased body mass index (idiopathic intracranial hyper-
tension, IIH) but less frequently can involve paediatric pa-
tients and patients regardless of their biological sex [15–17].
MRI reveals dilatation of the cortical subarachnoid space and
optic nerve sheaths with compression of the pituitary gland
(empty sella) [9].

Potential underlying mechanisms for PTCS include im-
paired CSF drainage and raised intracranial venous sinus pres-
sure [12, 13, 25, 26]. There is little evidence for CSF
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hypersecretion or cerebral oedema. There is debate as to
whether changes in CSF outflow resistance are sufficient per
se to explain the raised CSF pressure in all patients [23].
Importantly, impaired CSF absorption may be caused by
raised intracranial venous sinus pressure. Early studies of
PTCS demonstrated abnormalities of intracranial venous
drainage but laterMR venography studies were misinterpreted
as flow artefacts [1, 11, 17, 24, 31]. However, retrograde ce-
rebral venography and CT venography demonstrated stenoses
of the transverse sinuses in many patients with PTCS [12, 13,
25]. Commonly, patients with PTCS that is refractory to med-
ical management have been offered surgery including various
CSF diversion procedures and bariatric surgery [10, 31]. The
demonstration of venous sinus stenoses with significant pres-
sure gradients led to the introduction of venous sinus stenting
in 2002 [13, 18].

Many of these stenoses were not fixed but resolved, at least
in part, with drainage of CSF. Such reversible stenoses con-
tradict the traditional view that the intracranial venous sinuses
are largely incompressible in adults with sagittal sinus pres-
sure being independent of CSF pressure [24]. Furthermore,
these stenoses might create a positive feedback loop between
increased CSFp and SSp in patients with PTCS with second-
ary impairment of CSF absorption [28]. There is increasing
debate in developing the evidence behind shunting, therefore
decreasing CSFp, and stenting, therefore decreasing venous
pressure and ‘normalising’ cerebral venous anatomy and com-
pliance, in PTCS. On the other hand, there is very little evi-
dence on the pathophysiology of the increase of the two pres-
sures, how they interact, and why each of the selected treat-
ments could be effective or not.

In this study, we have explored the degree of coupling
between CSFp and SSp waveforms in adults suffering from
PTCS by using lumbar CSF infusion studies to measure
CSFp with simultaneous direct measurements of their
SSp at baseline, during infusion, and during/after CSF
drainage. In addition, we have examined the implications
of such coupling for the calculation of CSF outflow resis-
tance when using Davson’s equation: CSFp = Rout × If +
SSp, where Rout is the resistance to CSF outflow and If is
the CSF formation rate [6].

A preliminary account of this work has been published
[28].

Patients and methods

Between 2004 and 2006, we investigated 10 patients (9F:1M)
with the clinical features of PTCS who fulfilled the modified
Dandy criteria (signs and symptoms of raised ICP, no
localising neurological signs, normal neuroimaging apart
from MR venography, raised CSF pressure (> 20 mmHg [8,
10, 15, , 27]), and normal CSF constituents). Their mean age

was 41 years (range 22–55). All the patients had both head-
aches and papilloedema.

As part of their clinical investigation, they underwent
two procedures: constant-rate lumbar CSF infusion stud-
ies, to assess the CSFp and CSF dynamics, and direct
retrograde cerebral venography (DRCV) whereby a cath-
eter was placed within the sagittal sinus under fluoro-
scopic guidance, in order to assess the significance of
the stenosis.

Patients undergo either or both procedures in our hospital
routinely as part of their PTCS investigations, in order to es-
tablish a diagnosis and plan treatment. Both DRCVand lum-
bar infusions have been used safely in our centre as well as
other centres internationally [2, 4, 18].

Lumbar infusion studies [2, 4, 7]

Access was gained via lumbar puncture using two 21-
gauge Quincke needles at the intervertebral space L4-
L5 using lidocaine local anaesthesia, with the patient
lying on their side. A strict aseptic technique was used
to keep all the pre-filled tubing and the transducer sterile.
The skin was carefully prepared with antiseptic solution.
Connection of a standard, disposable fluid-filled pressure
transducer (Edwards LifesciencesTM manometry lines,
length 180 cm and inner diameter 1.2 mm), and pressure
amplifier (Spiegelberg or Philips) to the LP needle
allowed for pressure recording at a frequency of 30–
100 Hz , w i th fo l l owing process ing by ICM+
(University of Cambridge Enterprise Ltd.) [4, 30].

Once a satisfactory CSFp pulse waveform had been
achieved, baseline measurements were taken for 10 min,
followed by infusion of Hartmann’s solution at 1.5 ml/min
or 1.0 ml/min if the baseline CSF was ≥ 15 mmHg until the
ICP had plateaued for 5–10 min. The protocol included a
safety measure that required the infusion to stop if the mean
ICP increased to 40mmHg or above. This did not occur in any
of these patients. The total duration of the infusion tests was
30 to 45 min. After the end of the infusion test, pressure-
controlled withdrawal of CSF was carried out without remov-
ing the pressure transducer, via a tap connected to the pressure
lines. This allowed us to assess CSFp while continuing to
measure and record SSp during and after the end of CSF
removal. Withdrawal was stopped when the pressure reached
~ 10 mmHg or if the patient started complaining of headaches
and/or blurred vision.

Direct retrograde cerebral venography [12–14]

The catheter inserted for pressure measurement with DRCV
was longer and narrower than the manometry lines used for
CSF pressure.
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SSp was monitored and recorded with ICM+ in the same
way as CSFp. The mean pressure level, slow vasogenic waves
(period from 20 s to 2 min), and amplitude of pulse waveform
(AMPSSp) were extracted through computer data analysis and
recorded alongside CSFp.

Statistical analysis

Data points of all parameters were distributed normally and
hence the paired Student t test comparison was used for
assessing the significance of any differences in pressures. A
simple linear regression model was used to assess any associ-
ations between pairs of data.

Ethics statement

All tests were performed as part of routine clinical manage-
ment. All patients consented to the use of their data recordings
for research purposes. At the time of this study, such consent
did not include permission for data sharing.

Results

Overall, we observed time-related coupling between mean
CSFp and SSp (Fig. 1a), slow waves of CSFp and SSp
(Fig. 1b), and pulse waveforms of CSFp and SSp. Pulse
waveforms increased during an increase in both pressures
provoked by infusion. Specifically, in cases when SSp am-
plitude was detectable (it was not possible to record any
amplitude of SSp in 3 out of 10 sessions), both waveforms
were adjacent in their diastolic phases and divergent during
systole (Fig. 1c).

Mean SSp correlated very strongly with the CSFp at base-
line: R = 0.96; p = 0.0001; N = 9. Also at baseline, the pulse
amplitudes of CSFp and SSp were well correlated (amplitude
of SSp at baseline was recorded in 7 cases) (Fig. 2a).

During infusion, the two pressures increased concomitantly
(R = 0.92; p < 0.003; N = 7) and the changes of both pressures
correlated strongly (R = 0.97; p = 0.0007; N = 6). The slopes
of the amplitude—pressure lines, calculated from a simple,
linear regression model between CSFp and AMP of CSFp,
and SSp and AMP of SSp—also correlated strongly during
infusion (R = 0.97; p < 0.005; N = 7) (Fig. 2b).

Fig. 1 Observational demonstration of the static and dynamic coupling
between CSFp and SSp. a Static coupling between the mean CSFp
(upper, darker trend) and mean SSp (lower, dotted trend) values at
baseline, during and after the end of infusion (the infusion period is
marked as an event represented by the white area in the graph). b

Dynamic coupling between the slow vasogenic waves of CSFp (upper,
darker trend) and SSp (lower, dotted trend). cCoupling between the pulse
amplitudes of CSFp and SSp at baseline and during infusion. CSFp,
cerebrospinal fluid pressure; SSp, pressure of the sagittal sinus

 1003Acta Neurochir (2020) 162: 1001–1009



Table 1 summarises the mean values and difference be-
tween CSFp and SSp at each phase of monitoring.

The jugular venous pressure was measured in 5 patients
and on average was 10.43 ± 3.8 mmHg. The jugular venous
pressure (JVP) during one of the infusion tests is shown in Fig.
3a. Central venous pressure was measured on one patient and
was relatively stable during infusion (11.6 ± 2.2 mmHg).

During drainage, the overall correlation between the 2 pres-
sures was R = 0.78; p = 0.065, N = 6 (Fig. 3b). During
drainage, SSp appeared to stabilise at a level close to jugular
vein pressure while CSFp continued to fall.

Table 2 summarises the differences between CSFp, SSp,
and JVP at the end of drainage.

Table 1 Mean values of pressures during baseline, infusion and drainage

CSF pressure (mmHg) Sinus pressure (mmHg) p value CSFp-SSp (mmHg) p value

Baseline 27.0 ± 2.3 25.2 ± 7.5 p = 0.026; N = 10 2.34 ± 2.72 0.01953

Infusion 38.0 ± 8.0 33.1 ± 12.0 p = 0.01; N = 7* 4.9 ± 4.0 p = 0.026; N = 7*

Drainage 12.7 ± 5.6 16.0 ± 2.7 p = 0.02; N = 8 − 3.2 ± 3.9 p = 0.0097; N = 8

*In 3 patients, only drainage was performed, as baseline CSFp was > 40 mmHg

CSFp cerebrospinal fluid pressure, SSp pressure of the sagittal sinus

Fig. 2 Coupling of CSFp and SSp at baseline and during infusion. a Left:
linear regression demonstrating the coupling between CSFp and SSp at
baseline. Right: coupling between the pulse amplitude of CSFp and SSp
at baseline. Recording of the amplitude was only possible in 7 out of the
10 cases. b Linear regression demonstrating the maintenance of the
coupling between CSFp and SSp during infusion (left), the strong

correlation of the changes between CSFp and SSp during infusion,
when CSFp is increased by infusion of Hartmann’s solution, and the
increase in CSFp is subsequently invoking parallel increases in SSp
(middle). Right: correlation between the slopes of the amplitude-
pressure regression lines of both CSFp and SSp
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SSp as a function of CSFp

Using linear regression for each individual patient, SSp was
expressed as a function of CSFp in the format SSp = a × CSFp
+ b (for example, Fig. 4).

In all patients who had undergone infusion and drainage,
‘a’ was calculated to be 0.70 ± 0.14 for 9 patients. ‘b’ was
calculated as 6.3 ± 3.5 mmHg which represents the intercept
of this correlation that physiologically should correspond to
central venous pressure (CVP). In the one patient, CVP was
measured and found to be 11 mmHg; the intercept of the
correlation was 9.2 mmHg, which is within the limits of mea-
surement error (e.g. zeroing of external transducers).

Discussion

Our results indicate the following, in many cases of PTCS:

& CSFp and SSp are coupled both statically (mean values) and
dynamically (vasogenic components, mainly slow waves of
CSFp and respiratory amplitude in CSFp and SSp).

& When CSFp increases during CSF infusion, it produces an
increase in SSp and its vasogenic components.

& During drainage, both pressures decrease until a certain
point (most probably JVP) when CSFp may decrease fur-
ther while SSp remains constant.

Thus, venous sinus narrowing in PTCS generates signifi-
cantly raised CSFp in contrast to healthy normal subjects [20,
22, 24]. There are other conditions in which SSp may not
remain constant during CSF infusion as in infants and in the
presence of an open fontanelle, myelomeningocoele, or Chiari
malformation, and in individual cases [1, 5, , 27, 28, 31]. On
the other hand, cerebral venous thrombosis and narrowing of
the cerebral venous sinuses secondary, for example, to an
intrasinus meningioma are recognised causes of PTCS where
SSp is elevated but unchanged during CSF infusion.

Coupling of the two pressures

After the start of infusion, even though there is a direct coupling
between changes in CSFp and SSp, the two pressures appeared
to diverge compared with baseline (as shown in Fig. 1). This
divergence between mean CSFp and SSp may reflect that, at
the beginning of the CSF infusion, all the infused fluid is ini-
tially accommodated within the intracranial compliant space.
As CSFp increases towards its plateau, the infused CSF is
absorbed into the sagittal and transverse sinuses [2, 3, 6].

Implications of coupling between CSFp and SSp
for the calculation of CSF outflow resistance

Davson’s equation refers to the steady state and assumes that
SSp is independent of CSFp:

CSFp ¼ Rout� I f þ SSp

Fig. 3 Correlation between CSFp and SSp during CSF drainage. a
Overview of CSFp and SSp and JVP during infusion and during
drainage of CSF. JVP is projected as a dotted line on the CSFp and SSp
(SSp) panels, demonstrating that CSFp continues to drop after reaching

JVP; in contrast, SSp reaches values close to JVP (CVP) and remains
stable at this value as CSFp continues to decrease. b Correlation between
CSFp and SSp during drainage of CSF. JVP, jugular venous pressure

Table 2 Differences between CSFp, SSp, and JVP at the end of
drainage in N = 5 patients with JVP measured

Difference
(mmHg)

Significance
of difference

CSFp-JVP (mmHg) − 2.2 ± 3.4 p = 0.026

SSp-JVP (mmHg) 4.27 ± 3.0 p = 0.004
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where Rout is the resistance to CSF outflow and If is the CSF
formation rate [6].

In hydrocephalus, when SSp is not coupled to CSFp, a
constant-rate infusion study enables the calculation of Rout as:

Rout ¼ CSPpplateau−CSFpbaseline
� �

=Infusion rate

In the ten patients with PTCS in this study, the Rout calcu-
lated without correction for changes in SSp is 16.1 ± 2.1
mmHg/(ml/min). Using the measured values of SSp, Rout is
calculated as 5.2 ± 1.4 mmHg/(ml/min) (p < 0.001), approx-
imately 67% lower.

One approach is to modify Davson’s equation by express-
ing SSp as a function of CSFp (Fig. 4: SSp = a × CSFp + b).
Therefore, Davson’s equation may be rewritten for PTCS as:

CSFp ¼ Rout� I f þ a� CSFpþ b

and subsequently,

CSFp ¼ Rout� I f þ bð Þ= 1−að Þ

The average product of Rout × If is 3 mmHg [8], 1.5 in IIH
with the corrected Rout (see above); therefore, the average
CSFp = (1.5 + 6.3)/0.3 = 26 mmHg.

Pathophysiological interpretation of Davson’s
equation in PTCS

Finally, as derived from the simplified Davson’s equation
for IIH, CSFp is increased and is estimated to be around
26 mmHg. This estimation is almost identical to the
mean baseline CSFp in our patients, which is calculated
as 27 mmHg. The derived formula explains why in IIH
with CSFp-SSp coupling, the baseline intracranial pres-
sure is elevated. Moreover, correcting Rout as derived by
Davson’s equation, gives a more realistic estimation of a
Rout on average < 7 mmHg × min/ml. We have observed
in most of our classic IIH patients, that CSFp at plateau
is generally not much higher than baseline, resembling
the normal CSF circulation, as opposed to hydrocephalus
patients. In few exceptional cases, where a higher than
expected CSF plateau is observed, knowledge of the SSp
could provide valuable information about the differential
diagnosis.

Malm and colleagues [23], using a constant pressure infu-
sion technique, demonstrated that there may be two groups of
PTCS patients—one group with genuinely reduced conduc-
tance (increased Rout) and a second group with increased SSp
as the cause of their impaired CSF absorption. They also
showed that changes in CSF conductance changed with time
after onset of PTCS.

Fig. 4 Example of the linear regression analysis between CSFp (ICP in
the figure) and SSp (venous in the figure) for 1 out of the 9 studied
patients. The slope and the intercept of the regression for each patient
were averaged and were used to express SSp as SSp = a × CSFp + b, a =
slope and b = intercept. SSp, expressed this way, can be used in Davson’s

equation to simplify the calculations of its parameters in IIH patients.
Notice that below CSFp 10 mmHg, SSp stopped to decrease further,
while CSFp was easily drawn down by further drainage (JVP was
8 mmHg in this patient, CVP was ~ 11 mmHg)
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However, these interpretations do not take into ac-
count the spatially distributed nature of CSF absorption.
In most situations, CSF absorption is probably mainly
intracranial and there is only a small gradient of pres-
sure between the sagittal sinus and jugular foramen so
that it is reasonable to use one single value for SSp. In
contrast, in PTCS, there may be two CSF absorption
pressure gradients—above and below an area of sinus
narrowing. In other words, one Davson’s equation is
required to describe CSF absorption upstream of the
stenosis and another Davson’s equation for downstream
absorption. Davson’s equation assumes that all the in-
fused CSF is drained through channel(s) that may be
described by a single parameter. If CSF absorption is
split between upstream and downstream channels,
Davson’s equation cannot be used as the relative pro-
portion of ‘If’ drained by the two systems is unknown.
The transverse sinus pressure/JVP below the level of the
stenosis is much lower than SSp above the stenosis.
Lublinsky and colleagues have recently demonstrated
the presence of arachnoid granulations in the transverse
sinuses in both normal subjects and patients with IIH
[21]. Interestingly, the total volume and interface contact
area of intracranial arachnoid granulations is increased
in IIH patients.

The situation may become even more complex if the ste-
nosis is reversible with CSF removal and behaves as a Starling
resistor [29]. If part of the transverse sinus is compressible,
any rise in CSFp can decrease its lumen and increase the
hydrodynamic resistance for sinus blood flow, increasing in
the same way the SSp (if cerebral blood flow stays constant),
which in turns increases CSFp. This mechanism works as a
‘vicious circle’ until CSFp and SSp reach an elevated state of
equilibrium. This has been previously numerically simulated
using an elegant mathematical model. The model forecasted
that the system with collapsible transverse sinus (represented
as a ‘Starling Resistor’) has two steady states: at low and at
high CSFp.

CSFp-SSp coupling in other intracranial pathologies

An important question that merits systematic study is whether
the phenomenon of direct coupling of CSFp to SSp is limited
only to PTCS or may also play a role in some cases of acute
intracranial hypertension seen during brain swelling (head in-
jury, stroke, meningitis, etc.). A study in this direction from
early work suggested that 60% of ICP should be attributed to
vascular mechanisms, rather than CSF circulatory component
[18–20, 22, 32]. In one post-TBI patient, we anecdotally stud-
ied with double SSp and CSFp measurement during an infu-
sion study; SSp appeared to stay constant when CSFp
elevated.

Finally, our statistically strong and significant findings
could have important implications for PTCS patients, both in
the adult and paediatric populations, and it would be worth
designing future randomised trials aiming at treating PTCS
patients by stopping the reported pathophysiological coupling
of the two pressures.

Limitations

We did not collect information about arterial blood pressure
during the infusion studies and therefore its role in the inter-
action between the CSF and arterial/venous blood flows for
these PTCS patients.

Unfortunately, full analysis of the frequencies of the CSFp
and SSp/JVP is not possible using retrospective data because
we did not have information about the frequency properties of
the two pressure measurement systems used: in CSFp, a short
and wide manometer line and a LP needle was used; however,
in SSP, a long thin catheter and external transducer. This
makes accurate spectral analysis on CSFp-SSp questionable.

Conclusion

CSFp and SSp are coupled in PTCS, both at baseline and
during infusion, forming a positive feedback loop that may
be interrupted by CSF drainage. The implications of the cal-
culation of CSF outflow resistance are discussed.
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Comments

In this study, the authors evaluate ten adult patients with pseudotumour
cerebri syndrome (PTCS) with CSF infusion studies, and with parallel
direct retrograde cerebral venography. CSF pressure and sagittal sinus
pressure were recorded simultaneously at baseline and during infusion;
they were also recorded during drainage of CSF after completion of the
infusion. The authors conclude that in patients with PTCS, CSF, and
sagittal sinus pressure are coupled, with respect to both their static and
dynamic components, during both baseline and infusion. They argue that

elevated CSF pressure in PTCS may compress the venous sinuses, ele-
vating CSF pressure further; this positive feedback loop is only
interrupted by CSF drainage. They also argue that in PTCS, calculation
of Rout must incorporate this coupling of CSF pressure with venous sinus
pressure and demonstrate that only when this coupling is taken into con-
sideration, do the derived values of Rout and CSF pressure mirror what is
actually observed.

This is an important study, written by a group of researchers and
clinicians who are well known for their expertise in, and previous schol-
arly contributions to, CSF dynamics and understanding of venous in-
volvement in PTCS. It elegantly reviews the effects of PTCS on CSF
dynamics, although stops short of discussing whether CSF infusion stud-
ies could be of any clinical value in the assessment of patients with PTCS.
The review of Rout as applied to this condition is clear and succinct.

Kristian Aquilina
London, UK

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

 1009Acta Neurochir (2020) 162: 1001–1009


	Coupling of CSF and sagittal sinus pressure in adult patients with pseudotumour cerebri
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Patients and methods
	Lumbar infusion studies [2, 4, 7]
	Direct retrograde cerebral venography [12–14]
	Statistical analysis
	Ethics statement

	Results
	SSp as a function of CSFp

	Discussion
	Coupling of the two pressures
	Implications of coupling between CSFp and SSp for the calculation of CSF outflow resistance
	Pathophysiological interpretation of Davson’s equation in PTCS
	CSFp-SSp coupling in other intracranial pathologies

	Limitations
	Conclusion
	References


