83 research outputs found

    Approximate relations for laminar heat-transfer and shear-stress functions in equilibrium dissociated air

    Get PDF
    Approximate equations for computing enthalpy and velocity derivatives at surface of flat plate, cone, or blunt axisymmetric bod

    Correlation of free-flight turbulent heat-transfer data from axisymmetric bodies with compressible flat-plate relationships

    Get PDF
    Correlation of free flight turbulent heat transfer data from axisymmetric bodies with compressible flat plate relationship

    Orbiter catalytic/noncatalytic heat transfer as evidenced by heating to contaminated surfaces on STS-2 and STS-3

    Get PDF
    During that portion of Space Shuttle orbiter entry when significant aerodynamic heat transfer occurs, the flow over the vehicle is in chemical nonequilibrium. The parameter which most significantly influences the level of surface heat transfer in such a flow field is the catalytic efficiency of the surface with respect to the recombination of dissociated oxygen atoms. Significant, and instantaneous, changes were observed in the level of heat transfer at several lower surface centerline locations on STS-2 and STS-3. This phenomenon apparently resulted from a sudden change in the surface catalytic efficiency at these locations due to contamination of the surface by metallic oxides. As a result, data obtained from affected measurements cannot be considered as benchmark data with which to attempt to characterize nonequilibrium heat transfer to the orbiter's lower surface centerline

    Correlations for determining thermodynamic properties of hydrogen-helium gas mixtures at temperatures from 7,000 to 35,000 K

    Get PDF
    Simple relations for determining the enthalpy and temperature of hydrogen-helium gas mixtures were developed for hydrogen volumetric compositions from 1.0 to 0.7. These relations are expressed as a function of pressure and density and are valid for a range of temperatures from 7,000 to 35,000 K and pressures from 0.10 to 3.14 MPa. The proportionality constant and exponents in the correlation equations were determined for each gas composition by applying a linear least squares curve fit to a large number of thermodynamic calculations obtained from a detailed computer code. Although these simple relations yielded thermodynamic properties suitable for many engineering applications, their accuracy was improved significantly by evaluating the proportionality constants at postshock conditions and correlating these values as a function of the gas composition and the product of freestream velocity and shock angle. The resulting equations for the proportionality constants in terms of velocity and gas composition and the corresponding simple realtions for enthalpy and temperature were incorporated into a flow field computational scheme. Comparison was good between the thermodynamic properties determined from these relations and those obtained by using a detailed computer code to determine the properties. Thus, an appreciable savings in computer time was realized with no significant loss in accuracy

    Radiative property data for Venusian entry: A compendium

    Get PDF
    A compilation of experimental and calculated data on the radiative properties of species important in Venusian entry is presented. Molecular band systems, atomic lines, free-bound continua, and free-free continua are considered for the principal radiating species of shock-heated carbon dioxide. Data pertinent to the species in the ablation layer are included. The Venus atmosphere so closely approximates pure carbon dioxide (CO2) that the inviscid layer radiation is due almost entirely to thermally excited CO2. Data are included on the violet band system of the cyanogen radical CN. Recommendations are made as to best property values for radiative heating calculations. A review of the basic equations and the relationships of the various emission-absorption gas properties is included

    Recommended radiative property data for Venusian entry calculations

    Get PDF
    A compilation of experimental and calculated data on the radiative properties species important in Venusian entry is presented. Molecular band systems, atomic lines, free-bound, and free-free continua are considered for the principal radiating species of shock heated carbon dioxide. A limited amount of data pertinent to the species in the ablation layer is also included. The assumption is made that the Venus atmosphere so closely approximates pure CO2 that the inviscid layer radiation is due almost entirely to thermally excited CO2. The only exception is the inclusion of data on the Violet band system of CN. Recommendations are made as to best property values for radiative heating calculations. A review of the basic equations and the relationships of the various emission-absorption gas porperties is also included

    Preliminary Analysis of STS-3 Entry Heat-Transfer Data for the Orbiter Windward Centerline

    Get PDF
    A preliminary analysis of heat transfer data on the space shuttle orbiter windward centerline for the STS-3 mission entry is presented. Temperature-time history plots for each measurement location and tabulated wall temperature and convective heating rate data at 21 selected trajectory points are included. The STS-3 flight data are also compared with predictions by two approximation methods for computing convective heat transfer rates in equilibrium air

    Control of hypersonic turbulent skin friction by boundary-layer combustion of hydrogen

    Get PDF
    Shvab-Zeldovich coupling of flow variables has been used to extend Van Driest's theory of turbulent boundary-layer skin friction to include injection and combustion of hydrogen in the boundary layer. The resulting theory is used to make predictions of skin friction and heat transfer that are found to be consistent with experimental and numerical results. Using the theory to extrapolate to larger downstream distances at the same experimental conditions, it is found that the reduction in skin-friction drag with hydrogen mixing and combustion is three times that with mixing alone. In application to flow on a flat plate at mainstream velocities of 2, 4, and 6 knits, and Reynolds numbers from 3 X 10(6) to 1 x 10(8), injection and combustion of hydrogen yielded values of skin-friction drag that were less than one-half of the no-injection skin-friction drag, together with a net reduction in heat transfer when the combustion heat release in air was less than the stagnation enthalpy. The mass efficiency of hydrogen injection, as measured by effective specific impulse values, was approximately 2000 s

    Technical Comments

    No full text
    • …
    corecore