9 research outputs found

    Bax-Induced Apoptosis in Leber's Congenital Amaurosis: A Dual Role in Rod and Cone Degeneration

    Get PDF
    Pathogenesis in the Rpe65−/− mouse model of Leber's congenital amaurosis (LCA) is characterized by a slow and progressive degeneration of the rod photoreceptors. On the opposite, cones degenerate rapidly at early ages. Retinal degeneration in Rpe65−/− mice, showing a null mutation in the gene encoding the retinal pigment epithelium 65-kDa protein (Rpe65), was previously reported to depend on continuous activation of a residual transduction cascade by unliganded opsin. However, the mechanisms of apoptotic signals triggered by abnormal phototransduction remain elusive. We previously reported that activation of a Bcl-2-dependent pathway was associated with apoptosis of rod photoreceptors in Rpe65−/− mice during the course of the disease. In this study we first assessed whether activation of Bcl-2-mediated apoptotic pathway was dependent on constitutive activation of the visual cascade through opsin apoprotein. We then challenged the direct role of pro-apoptotic Bax protein in triggering apoptosis of rod and cone photoreceptors

    Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina

    No full text
    Absorption of a light particle by an opsin-pigment causes photoisomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the resulting apo-opsin requires chemical re-isomerization of the photobleached chromophore. This is carried out by a multistep enzyme pathway called the visual cycle. Accumulating evidence suggests the existence of an alternate visual cycle for regenerating opsins in daylight. Here, we identified dihydroceramide desaturase-1 (DES1) as a retinol isomerase and an excellent candidate for isomerase-2 in this alternate pathway. DES1 is expressed in retinal Müller cells where it co-immunoprecipitates with cellular retinaldehyde binding protein (CRALBP). Adenoviral gene therapy with DES1 partially rescued the biochemical and physiological phenotypes in rpe65 (−/−) mice lacking isomerohydrolase (isomerase-1). Knockdown of DES1 expression by RNA-interference concordantly reduced isomerase-2 activity in cultured Müller cells. Purified DES1 possessed very high isomerase-2 activity in the presence of appropriate cofactors, suggesting that DES1 by itself is sufficient for isomerase activity
    corecore