64 research outputs found

    Exploring Cartan gravity with dynamical symmetry breaking

    Get PDF
    24 pags.; 2 figs.; 3 app. PACS number: 04.50.+hIt has been known for some time that General Relativity can be regarded as a Yang-Mills-type gauge theory in a symmetry broken phase. In this picture the gravity sector is described by an SO(1, 4) or SO(2, 3) gauge field and Higgs field Va which acts to break the symmetry down to that of the Lorentz group SO(1, 3). This symmetry breaking mirrors that of electroweak theory. However, a notable difference is that while the Higgs field Φ of electroweak theory is taken as a genuine dynamical field satisfying a Klein-Gordon equation, the gauge independent norm V2 ≡ ηabV aVb of the Higgs-type field Va is typically regarded as non-dynamical. Instead, in many treatments Va does not appear explicitly in the formalism or is required to satisfy V2 = const. ≠ 0 by means of a Lagrangian constraint. As an alternative to this we propose a class of polynomial actions that treat both the gauge connection and Higgs field Va as genuine dynamical fields with no ad hoc constraints imposed. The resultant equations of motion consist of a set of first-order partial differential equations. We show that for certain actions these equations may be cast in a second-order form, corresponding to a scalar-tensor model of gravity. One simple choice leads to the extensively studied Peebles-Ratra rolling quintessence model. Another choice yields a scalar-tensor symmetry broken phase of the theory with positive cosmological constant and an effective mass M of the gravitational Higgs field ensuring the constancy of V2 at low energies and agreement with empirical data if M is sufficiently large. More general cases are discussed corresponding to variants of Chern-Simons modified gravity and scalar-Euler form gravity, each of which yield propagating torsion. © 2014 IOP Publishing Ltd.HW was supported by the Spanish MICINN/MINECO Project FIS2011-29287, the CAM research consortium QUITEMAD S2009/ESP-1594, and the CSIC JAE-DOC 2011 program. TZ was supported by STFC grant ST/J000353/1.Peer Reviewe

    On the growth of structure in theories with a dynamical preferred frame

    Full text link
    We study the cosmological stability of a class of theories with a dynamical preferred frame. For a range of actions, we find cosmological solutions which are compatible with observations of the recent history of the Universe: a matter dominated era followed by accelerated expansion. We then study the evolution of linear perturbations on these backgrounds and find conditions on the parameters of the theory which allow for the growth of structure sourced by the new degrees of freedom

    The Vector-Tensor nature of Bekenstein's relativistic theory of Modified Gravity

    Get PDF
    Bekenstein's theory of relativistic gravity is conventionally written as a bi-metric theory. The two metrics are related by a disformal transformation defined by a dynamical vector field and a scalar field. In this comment we show that the theory can be re-written as Vector-Tensor theory akin to Einstein-Aether theories with non-canonical kinetic terms. We discuss some of the implications of this equivalence.Comment: Updated version: Notation cleaned up and some typos corrected-TG
    • …
    corecore