17 research outputs found

    The Existence of Shared Muscle Synergies Underlying Perturbed and Unperturbed Gait Depends on Walking Speed

    Get PDF
    Muscle synergy theory assumes that the central nervous system generates a wide range of complex motor outputs by recruiting muscle synergies with different strengths and timings. The current understanding is that a common set of muscle synergies underlies unperturbed as well as perturbed walking at self-selected speeds. However, it is not known whether this is the case for substantially slower walking. The aim of this study was to investigate whether a shared set of muscle synergies underlies balance recovery responses following inward-and outward-directed perturbations in the mediolateral direction at various perturbation onsets and walking speeds. Twelve healthy subjects walked at three walking speeds (0.4, 0.6, and 0.8 m/s) on a treadmill while perturbations were applied to the pelvis using the balance assessment robot. A set of sixteen EMG signals, i.e., eight muscles per leg, was measured and decomposed into muscle synergies and weighting curves using non-negative matrix factorization. The muscles included were left and right tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, rectus femoris, hamstring, gluteus medius, and gluteus maximus. In general, four muscle synergies were needed to adequately reconstruct the data. Muscle synergies were similar for unperturbed and perturbed walking at a high walking speed (0.8 m/s). However, the number of similar muscle synergies between perturbed and unperturbed walking was significantly lower for low walking speeds (0.4 and 0.6 m/s). These results indicate that shared muscle synergies underlying perturbed and unperturbed walking are less present during slow walking compared to fast walking

    Kinematic, Dynamic and EMG Analysis of Drop Jumps in Female Elite Triple Jump Athletes

    Get PDF
    The purpose of the study was a biodynamic analysis of the kinematic, dynamic and EMG parameters of two types of drop jumps (heights of 25 cm and 45 cm). The sample of measured subjects included four female elite triple jump athletes, with their best results varying from 13.33 to 15.06 meters. The kinematic and dynamic parameters were calculated with the use of a bipedal tensiometric force plate, which was synchronized with nine CCD cameras. A 16-channel electromyography (BTS Pocket, Myolab) was used to analyze the EMG activation of the following muscles: m. erector spinae, m. gluteus, m. rectus femoris, m. vastus medialis, m. vastus lateralis, m. biceps femoris, m. soleus and m. gastrocnemius medialis. In the drop jump from a 25 cm height, the measured subjects achieved the following results: height of jump 43.37±5.39 cm and ground reaction force 2770±411 N. In comparison, results for the drop jump from a 45 cm height were: height of jump 45.22±4.65 cm and ground reaction force 2947±366 N. Vertical velocity of the take-off in the 25 cm drop jump was 2.77±0.19 ms–1 and in the 45 cm drop jump it was 2.86±0.15 ms–1. Observation of the EMG activation revealed the proximal to distal principle of muscle activation at work in both types of drop jumps. In the fi rst phase of the concentric phase the most active muscles were m. gluteus maximus and m. rectus femoris. The greatest activity of m. gastrocnemius medialis and m. soleus was noticed in the last third of the take-off action. Signifi cantly high EMG activation of m. vastus medialis and m. vastus lateralis was already shown in the fl ight phase prior to the feet making contact with the ground

    Design of a series visco-elastic actuator for multi-purpose rehabilitation haptic device

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variable structure parallel mechanisms, actuated with low-cost motors with serially added elasticity (series elastic actuator - SEA), has considerable potential in rehabilitation robotics. However, reflected masses of a SEA and variable structure parallel mechanism linked with a compliant actuator result in a potentially unstable coupled mechanical oscillator, which has not been addressed in previous studies.</p> <p>Methods</p> <p>The aim of this paper was to investigate through simulation, experimentation and theoretical analysis the necessary conditions that guarantee stability and passivity of a haptic device (based on a variable structure parallel mechanism driven by SEA actuators) when in contact with a human. We have analyzed an equivalent mechanical system where a dissipative element, a mechanical damper was placed in parallel to a spring in SEA.</p> <p>Results</p> <p>The theoretical analysis yielded necessary conditions relating the damping coefficient, spring stiffness, both reflected masses, controller's gain and desired virtual impedance that needs to be fulfilled in order to obtain stable and passive behavior of the device when in contact with a human. The validity of the derived passivity conditions were confirmed in simulations and experimentally.</p> <p>Conclusions</p> <p>These results show that by properly designing variable structure parallel mechanisms actuated with SEA, versatile and affordable rehabilitation robotic devices can be conceived, which may facilitate their wide spread use in clinical and home environments.</p

    Adjusting kinematics and kinetics in a feedback-controlled toe walking model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In clinical gait assessment, the correct interpretation of gait kinematics and kinetics has a decisive impact on the success of the therapeutic programme. Due to the vast amount of information from which primary anomalies should be identified and separated from secondary compensatory changes, as well as the biomechanical complexity and redundancy of the human locomotion system, this task is considerably challenging and requires the attention of an experienced interdisciplinary team of experts. The ongoing research in the field of biomechanics suggests that mathematical modeling may facilitate this task. This paper explores the possibility of generating a family of toe walking gait patterns by systematically changing selected parameters of a feedback-controlled model.</p> <p>Methods</p> <p>From the selected clinical case of toe walking we identified typical toe walking characteristics and encoded them as a set of gait-oriented control objectives to be achieved in a feedback-controlled walking model. They were defined as fourth order polynomials and imposed via feedback control at the within-step control level. At the between-step control level, stance leg lengthening velocity at the end of the single support phase was adaptively adjusted after each step so as to facilitate gait velocity control. Each time the gait velocity settled at the desired value, selected intra-step gait characteristics were modified by adjusting the polynomials so as to mimic the effect of a typical therapeutical intervention - inhibitory casting.</p> <p>Results</p> <p>By systematically adjusting the set of control parameters we were able to generate a family of gait kinematic and kinetic patterns that exhibit similar principal toe walking characteristics, as they were recorded by means of an instrumented gait analysis system in the selected clinical case of toe walking. We further acknowledge that they to some extent follow similar improvement tendencies as those which one can identify in gait kinematics and kinetics in the selected clinical case after inhibitory casting.</p> <p>Conclusions</p> <p>The proposed walking model that is based on a two-level control strategy has the ability to generate different gait kinematics and kinetics when the set of control parameters that define walking premises change. Such a framework does not have only educational value, but may also prove to have practical implications in pathological gait diagnostics and treatment.</p

    Real-Time Gait Event Detection with Adaptive Frequency Oscillators from a Single Head-Mounted IMU

    No full text
    Accurate real-time gait event detection is the basis for the development of new gait rehabilitation techniques, especially when utilizing robotics or virtual reality (VR). The recent emergence of affordable wearable technologies, especially inertial measurement units (IMUs), has brought forth various new methods and algorithms for gait analysis. In this paper, we highlight some advantages of using adaptive frequency oscillators (AFOs) over traditional gait event detection algorithms, implemented a real-time AFO-based algorithm that estimates the gait phase from a single head-mounted IMU, and validated our method on a group of healthy subjects. Gait event detection was accurate at two different walking speeds. The method was reliable for symmetric, but not asymmetric gait patterns. Our method could prove especially useful in VR applications since a head-mounted IMU is already an integral part of commercial VR products

    Influence of Treadmill Speed and Perturbation Intensity on Selection of Balancing Strategies during Slow Walking Perturbed in the Frontal Plane

    No full text
    Background. Common understanding is that adequate foot placement (stepping strategy) is crucial in maintaining stability during walking at normal speed. The aim of this study was to investigate strategies that humans use to cope with lateral perturbations during very slow walking. Methods. Ten healthy individuals underwent an experimental protocol whereby a set of perturbations directed inward (medially to a stance leg) and outward (laterally to a stance leg) of three intensities (F1=5%, F2=10%, and F3=15% of body weight), applied at three instances of a stance phase, were delivered in random order to the pelvis using a balance assessment robot while walking on a treadmill at three walking speeds (S1=0.4, S2=0.6, and S3=0.8 m/s). We analyzed the peak center of mass displacements; step length, step width, and step times; and the lateral component of ground reaction force for perturbations that were delivered at the beginning of the gait cycle. Results. Responses after inward perturbations were similar at all tested speeds and consistently employed stepping strategy that was further facilitated by a shortened stance. Wider and shorter steps were applied with increased perturbation intensity. Responses following outward perturbations were more complex. At S1, hip strategy (impulse-like increase of mediolateral ground reaction force) augmented with ankle strategy (mediolateral shift of the center of pressure) mainly contributed to responses already during the stance phase. The stance duration was significantly longer for all perturbation intensities. At S2, the relative share of hip strategy was reduced while with increased perturbation intensity, stepping strategy was gradually added. The stance duration was significantly longer for F1 and F2. At S3, stepping strategy was mainly used while the duration of stance was similar to the one in unperturbed walking. Responses following both inward and outward perturbations at all speeds were characterized by temporary slowing down movement in a sagittal plane that was more pronounced with increased perturbation intensity. Conclusions. This study provides novel insights into balancing strategies used at slower walking speeds which may be more relevant to understand the challenges of gait stability following perturbations in the frontal plane in clinical populations

    Comparison of dynamic balancing responses following outward lateral perturbations during walking of healthy and post-stroke subjects

    No full text
    Efficient dynamic balancing and movement coordination during walking are essential for stability. The objective of this preliminary study was to assess dynamic balancing responses in a selected post-stroke subject and to compare them with those assessed in neurologically intact individual. Balance Assessment Robot, a haptic robot that interfaces to a pelvis of a subject walking on an instrumented treadmill, was used to deliver perturbing pushes to the pelvis. We have assessed centre-of-pressure (CoP) and horizontal components of ground reaction forces (GRF) following outward pushes. The results have shown that depending on the amplitude of a perturbing push neurologically intact individual responded predominantly by “ankle” and “hip” strategies at lower amplitude of perturbation and “ankle” and “stepping” strategies at higher amplitude of perturbation. Post-stroke subject responded mainly by “ankle” and “hip” strategies when perturbed on the sound leg while the response when perturbed on the impaired leg was similar to the one observed in healthy subject. These preliminary results indicate that post-stroke subjects might be reluctant or not able to perform “cross step” with their impaired leg which is needed when counteracting outward perturbation

    Development of an Apparatus for Bilateral Rhythmical Training of Arm Movement Via Linear and Elliptical Trajectories of Various Directions

    No full text
    Clinical rehabilitation of individuals with various neurological disorders requires a significant number of movement repetitions in order to improve coordination and restoration of appropriate muscle activation patterns. Arm reaching movement is frequently practiced via motorized arm cycling ergometers where the trajectory of movement is circular thus providing means for practicing a single and rather nonfunctional set of muscle activation patterns, which is a significant limitation. We have developed a novel mechanism that in the combination with an existing arm ergometer device enables nine different movement modalities/trajectories ranging from purely circular trajectory to four elliptical and four linear trajectories where the direction of movement may be varied. The main objective of this study was to test a hypothesis stating that different movement modalities facilitate differences in muscle activation patterns as a result of varying shape and direction of movement. Muscle activation patterns in all movement modalities were assessed in a group of neurologically intact individuals in the form of recording the electromyographic (EMG) activity of four selected muscle groups of the shoulder and the elbow. Statistical analysis of the root mean square (RMS) values of resulting EMG signals have shown that muscle activation patterns corresponding to each of the nine movement modalities significantly differ in order to accommodate to variation of the trajectories shape and direction. Further, we assessed muscle activation patterns following the same protocol in a selected clinical case of hemiparesis. These results have shown the ability of the selected case subject to produce different muscle activation patterns as a response to different movement modalities which show some resemblance to those assessed in the group of neurologically intact individuals. The results of the study indicate that the developed device may significantly extend the scope of strength and coordination training in stroke rehabilitation which is in current clinical rehabilitation practice done through arm cycling
    corecore