77 research outputs found

    In vitro Studies on Metabolism of Salvinorin A

    Get PDF
    Microbial transformation of natural products is a well established model for mammalian metabolism. Salvinorin A, a diterpenoid isolated from the hallucinogenic mint Salvia divinorum Epling & Játiva-M (Lamiaceae), is a potent non-nitrogenous κ-opioid receptor agonist. The metabolism of salvinorin A has still not yet been well established. Thirty fungal species were screened for the ability to metabolize salvinorin A. We observed that salvinorin A undergoes fast hydrolysis of the acetate group at carbon atom C2, resulting in formation of the pharmacologically inactive product, salvinorin B. Ex vivo experiments were also performed using organelle fractions isolated from rat liver and brain. Crude tissue homogenate and individual organelles show that the primary route of salvinorin A metabolism is hydrolysis to salvinorin B. No metabolic transformation of salvinorin B was observed in these studies

    Bis-spirolabdane Diterpenoids from Leonotis nepetaefolia

    Get PDF
    Ten new bis-spirolabdane diterpenoids, leonepetaefolins A–E (1, 3, 5, 7, 9) and 15-epi-leonepetaefolins A-E (2, 4, 6, 8, 10), together with eight known labdane diterpenoids (11–18) as well as two known flavonoids apigenin and cirsiliol, were isolated from the leaves of Leonotis nepetaefolia. The structures of the new compounds were determined on the basis of 1D-and 2D-NMR experiments including 1H, 13C, DEPT, 1H-1H COSY, HSQC, HMBC, and NOESY. The absolute configuration of an epimeric mixture of 1 and 2 was determined by X-ray crystallographic analysis. The compounds isolated were evaluated for their binding propensity in several CNS G protein-coupled receptor assays in vitro

    Convenient synthesis and in vitro pharmacological activity of 2-thioanalogs of salvinorin A and B

    Get PDF
    To study drug-receptor interactions, new thio-derivatives of salvinorin A, an extremely potent natural κ-opioid receptor (KOR) agonist, were synthesized. Obtained compounds were examined for receptor binding affinity. Analogs with the same configuration at carbon atom C-2 as in natural salvinorin A showed higher affinity to KOR than their corresponding epimers

    (2S,4aR,6aR,7R,9S,10aS,10bR)-7-Carb­oxy-2-(3-fur­yl)-6a,10b-dimethyl-4,10-dioxoperhydro­benzo[f]isochromen-9-yl acetate

    Get PDF
    The asymmetric unit of the title compound, C22H26O8, contains two crystallographically independent mol­ecules with closely comparable conformations (r.m.s. overlay = 0.54 Å for 30 non-H atoms). All six-membered rings display chair conformations, with a slight distortion for the lactone ring. The mol­ecules are connected by O—H⋯O hydrogen bonds into chains along [010], with the independent mol­ecules segregated into separate chains. The two mol­ecules in the asymmetric unit face each other in a head-to-tail fashion, with the furan ring of one mol­ecule turned towards the carboxylic acid terminal of the other mol­ecule

    Synthesis and biological evaluation of new salvinorin A analogues incorporating natural amino acids

    Get PDF
    The synthesis and in vitro evaluation of a new series of salvinorin A analogues substituted at the C(2) position with natural amino acids is reported. Compound 12, containing Val, displayed high affinity and full agonist activity at the kappa-opioid receptor. Analogues with bulky and/or aromatic residues were inactive, showing the importance of size and electronegativity of C(2)-substituents for binding affinity of salvinorin A derivatives

    Phytochemical screening of Pulsatilla species and investigation of their biological activities

    Get PDF
    © 2019, The Author(s). We previously demonstrated that extracts from Echinacea purpurea material varied substantially in their ability to activate macrophages in vitro and that this variation was due to differences in their content of bacterial components. The purpose of the current study was to identify soil conditions (organic matter, nitrogen, and moisture content) that alter the macrophage activation potential of E. purpurea and determine whether these changes in activity correspond to shifts in the plant-associated microbiome. Increased levels of soil organic matter significantly enhanced macrophage activation exhibited by the root extracts of E. purpurea (p \u3c 0.0001). A change in soil organic matter content from 5.6% to 67.4% led to a 4.2-fold increase in the macrophage activation potential of extracts from E. purpurea. Bacterial communities also differed significantly between root materials cultivated in soils with different levels of organic matter (p \u3c 0.001). These results indicate that the level of soil organic matter is an agricultural factor that can alter the bacterial microbiome, and thereby the activity, of E. purpurea roots. Since ingestion of bacterial preparation (e.g., probiotics) is reported to impact human health, it is likely that the medicinal value of Echinacea is influenced by cultivation conditions that alter its associated bacterial community

    Unusual hemiacetal structure derived from Salvinorin A

    Get PDF
    The salvinorin A analog dimethyl (2R,3aR,4R,6aR,7R,9S,9aS,9bS)-2-(3-fur­yl)-9,9a-dihydr­oxy-3a,6a-dimethyl­dodeca­hydro­benzo[de]chromene-4,7-dicarboxyl­ate, C22H30O8, has a relatively simple spatial arrangement in which mol­ecules are linked into layers by two pairs of O—H⋯O hydrogen bonds. Each mol­ecule has as the central feature a dodeca­hydro-1H-phenalene ring system. Its three six-membered rings are in the chair conformation, with two axial methyl groups, one axial OH, and one equatorial OH, these OH groups being directly responsible for linking of the mol­ecules in the crystal structure

    Kappa-opioid receptor-selective dicarboxylic ester-derived salvinorin A ligands

    Get PDF
    Salvinorin A, the active ingredient of the hallucinogenic plant Salvia divinorum is the most potent known naturally occurring hallucinogen and is a selective κ-opioid receptor agonist. To better understand the ligand-receptor interactions, a series of dicarboxylic ester-type of salvinorin A derivatives were synthesized and evaluated for their binding affinity at κ, δ, and μ-opioid receptors. Most of the analogues show high affinity to the κ-opioid receptor. Methyl malonyl derivative 4 shows the highest binding affinity (Ki = 2 nM), analogues 5, 7, and 14 exhibit significant affinity for the κ-receptor (Ki = 21, 36 and 39 nM)

    Salvinorin A Inhibits Airway Hyperreactivity Induced by Ovalbumin Sensitization

    Get PDF
    Salvinorin A, a neoclerodane diterpene isolated from Salvia divinorum, exerts a number of pharmacological actions which are not solely limited to the central nervous system. Recently it has been demonstrated that Salvinorin A inhibits acute inflammatory response affecting leukotriene (LT) production. Since LTs are potent lipid mediators implicated in allergic diseases, we evaluated the effect of Salvinorin A on allergic inflammation and on airways following sensitization in the mouse. Mice were sensitized with s.c. injection of ovalbumin (OVA) on days 1 and 8. Sensitized mice received on days 9 and 12 on the shaved dorsal surface air administration to induce the development of the air-pouches. On day 15 animals were challenged by injection of OVA into the air-pouch. Salvinorin A, administered (10 mg/kg) before each allergen exposure, significantly reduced OVA-induced LT increase in the air pouch. This effect was coupled to a reduction in cell recruitment and Th2 cytokine production. In another set of experiments, mice were sensitized with OVA and both bronchial reactivity and pulmonary inflammation were assessed. Salvinorin A abrogated bronchial hyperreactivity and interleukin (IL)-13 production, without effect on pulmonary inflammation. Indeed cell infiltration and peribronchial edema were still present following diterpenoid treatment. Similarly, pulmonary IL-4 and plasmatic IgE levels were not modulated. Conversely, Salvinorin A significantly reduced LTC4 production in the lung of sensitized mice. Finally mast cell activity was evaluated by means of toluidine blue staining. Data obtained evidenced that Salvinorin A significantly inhibited mast cell degranulation in the lung. Our study demonstrates that Salvinorin A inhibits airway hyperreactivity induced by sensitization by inhibition of LT production and mast cell degranulation. In conclusion Salvinorin A could represent a promising candidate for drug development in allergic diseases such as asthma

    Effect of Non-psychotropic Plant-derived Cannabinoids on Bladder Contractility: Focus on Cannabigerol.

    Get PDF
    There are anecdotal reports that some Cannabis preparations may be useful for bladder dysfunctions. Here, we investigated the effect of a number of non-psychotropic phytocannabinoids, namely cannabidiol (CBD), cannabigerol (CBG), cannabidivarin (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabichromene (CBC) on mouse bladder contractility in vitro. CBG, THCV, CBD and CBDV, but not CBC, at concentration ranging from 10−8M to 10−4M, decreased (with similar potency), the contractions induced by acetylcholine without significantly modifying the contractions induced by electrical stimulation. The rank order of efficacy was CBG=THCV>CBD>CBDV. In depth studies on CBG showed that the effect of this phytocannabinoid on acetylcholine-induced contractions was not affected by CB1or CB2receptor antagonists. Additionally, CBG also reduced acetylcholine-induced contractions in the human bladder
    corecore