188 research outputs found

    60 GHz MAC Standardization: Progress and Way Forward

    Full text link
    Communication at mmWave frequencies has been the focus in the recent years. In this paper, we discuss standardization efforts in 60 GHz short range communication and the progress therein. We compare the available standards in terms of network architecture, medium access control mechanisms, physical layer techniques and several other features. Comparative analysis indicates that IEEE 802.11ad is likely to lead the short-range indoor communication at 60 GHz. We bring to the fore resolved and unresolved issues pertaining to robust WLAN connectivity at 60 GHz. Further, we discuss the role of mmWave bands in 5G communication scenarios and highlight the further efforts required in terms of research and standardization

    Improved Decoding of Staircase Codes: The Soft-aided Bit-marking (SABM) Algorithm

    Get PDF
    Staircase codes (SCCs) are typically decoded using iterative bounded-distance decoding (BDD) and hard decisions. In this paper, a novel decoding algorithm is proposed, which partially uses soft information from the channel. The proposed algorithm is based on marking certain number of highly reliable and highly unreliable bits. These marked bits are used to improve the miscorrection-detection capability of the SCC decoder and the error-correcting capability of BDD. For SCCs with 22-error-correcting Bose-Chaudhuri-Hocquenghem component codes, our algorithm improves upon standard SCC decoding by up to 0.300.30~dB at a bit-error rate (BER) of 10−710^{-7}. The proposed algorithm is shown to achieve almost half of the gain achievable by an idealized decoder with this structure. A complexity analysis based on the number of additional calls to the component BDD decoder shows that the relative complexity increase is only around 4%4\% at a BER of 10−410^{-4}. This additional complexity is shown to decrease as the channel quality improves. Our algorithm is also extended (with minor modifications) to product codes. The simulation results show that in this case, the algorithm offers gains of up to 0.440.44~dB at a BER of 10−810^{-8}.Comment: 10 pages, 12 figure

    Implementation of a High-Throughput Fast-SSC Polar Decoder with Sequence Repetition Node

    Full text link
    Even though polar codes were adopted in the latest 5G cellular standard, they still have the fundamental problem of high decoding latency. Aiming at solving this problem, a fast simplified successive cancellation (Fast-SSC) decoder based on the new class of sequence repetition (SR) nodes has been proposed recently in \cite{sr2020} and has a lower required number of time steps than other existing Fast-SSC decoders in theory. This paper focuses on the hardware implementation of this SR node-based fast-SSC (SRFSC) decoder. The implementation results for a polar code with length 1024 and code rate 1/2 show that our implementation has a throughput of 505505 Mbps on an Altera Stratix IV FPGA, which is 17.9% higher with respect to the previous work.Comment: 6 pages, 6 figures. Accepted and to appear in IEEE International Workshop on Signal Processing Systems, Oct 2020 (SIPS2020). The latest version. arXiv admin note: text overlap with arXiv:2005.0439

    Threshold-Based Fast Successive-Cancellation Decoding of Polar Codes

    Get PDF
    Fast SC decoding overcomes the latency caused by the serial nature of the SC decoding by identifying new nodes in the upper levels of the SC decoding tree and implementing their fast parallel decoders. In this work, we first present a novel sequence repetition node corresponding to a particular class of bit sequences. Most existing special node types are special cases of the proposed sequence repetition node. Then, a fast parallel decoder is proposed for this class of node. To further speed up the decoding process of general nodes outside this class, a threshold-based hard-decision-aided scheme is introduced. The threshold value that guarantees a given error-correction performance in the proposed scheme is derived theoretically. Analysis and hardware implementation results on a polar code of length 10241024 with code rates 1/41/4, 1/21/2, and 3/43/4 show that our proposed algorithm reduces the required clock cycles by up to 8%8\%, and leads to a 10%10\% improvement in the maximum operating frequency compared to state-of-the-art decoders without tangibly altering the error-correction performance. In addition, using the proposed threshold-based hard-decision-aided scheme, the decoding latency can be further reduced by 57%57\% at Eb/N0=5.0\mathrm{E_b}/\mathrm{N_0} = 5.0~dB.Comment: 14 pages, 8 figures, 5 tables, submitted to IEEE Transactions on Communication

    Inter-frame polar coding with dynamic frozen bits

    Get PDF
    A new inter-frame correlated polar coding scheme is proposed, where two consecutive frames are correlated-encoded and assist each other during decoding. The correlation is achieved by dynamic configuration of the frozen bits. The frozen bits of the second frame partially depend on the unfrozen bits of the first frame in encoding and the number of bits that are viewed as frozen by decoder is alterable in different decoding modes. Using this new encoding/decoding scheme, a failed decoded frame can be decoded again with extra information which corrects the errors in its highly unreliable unfrozen bits. Thus, the probability of successful decoding is improved. Simulation results show that the performance of the proposed polar codes outperforms that of the classical counterpart significantly with negligible memory and complexity increment.</p

    Multifunctional photonic integrated circuit for diverse microwave signal generation, transmission and processing

    Get PDF
    Microwave photonics (MWP) studies the interaction between microwave and optical waves for the generation, transmission and processing of microwave signals (i.e., three key domains), taking advantages of broad bandwidth and low loss offered by modern photonics. Integrated MWP using photonic integrated circuits (PICs) can reach a compact, reliable and green implementation. Most PICs, however, are recently developed to perform one or more functions restricted inside a single domain. In this paper, as highly desired, a multifunctional PIC is proposed to cover the three key domains. The PIC is fabricated on InP platform by monolithically integrating four laser diodes and two modulators. Using the multifunctional PIC, seven fundamental functions across microwave signal generation, transmission and processing are demonstrated experimentally. Outdoor field trials for electromagnetic environment surveillance along an in-service high-speed railway are also performed. The success to such a PIC marks a key step forward for practical and massive MWP implementations.Comment: 17 page

    Adaptive beamforming for optical wireless communication via fiber modal control

    Full text link
    High-speed optical wireless communication can address the exponential growth in data traffic. Adaptive beamforming customized for the target location is crucial, but existing solutions such as liquidcrystal spatial light modulators and microelectromechanical systems require costly micro/nano manufacturing, delicate alignment, and a high degree of mechanical stability. These challenges reflect the fragility of integrating a fiber network with micro/nano mechanical or photonic systems. Here, we realize low-cost, low-loss, and fiber-compatible beamforming and continuous beam steering through controlled bending of a multi-mode fiber that modifies its modal coupling, and use it to enable flexible optical wireless communication at 10 Gb/s. By using the fiber modal coupling as degrees of freedom rather than an impediment, this approach offers a promising solution for flexible and cost-effective optical wireless communication networks.Comment: 17 pages, 7 figure

    Beyond 110 GHz uni-traveling carrier photodiodes on an InP-membrane-on-silicon platform

    Get PDF
    In this work we have demonstrated a waveguide integrated uni-traveling carrier photodiode on an InP-membrane-on-silicon platform with 3 dB bandwidth beyond 110 GHz. With design optimization and an improved process, devices as small as 3 ×2;μm2 are successfully realized. An electrical equivalent circuit model based on measured S-parameters revealed ultra-small series resistance and junction capacitance as low as 6.5 Ω and 4.4 fF, respectively, in the diodes. The model also provided insight in the photocurrent dependent characteristics in the bandwidth and resonsivity of the devices. Finally, data transmission measurements are demonstrated, showcasing the high speed telecommunication abilities of the UTC-PD.</p
    • …
    corecore