48 research outputs found

    Enhanced Collateral Growth by Double Transplantation of Gene-Nucleofected Fibroblasts in Ischemic Hindlimb of Rats

    Get PDF
    BACKGROUND: Induction of neovascularization by releasing therapeutic growth factors is a promising application of cell-based gene therapy to treat ischemia-related problems. In the present study, we have developed a new strategy based on nucleofection with alternative solution and cuvette to promote collateral growth and re-establishment of circulation in ischemic limbs using double transplantation of gene nucleofected primary cultures of fibroblasts, which were isolated from rat receiving such therapy. METHODS AND RESULTS: Rat dermal fibroblasts were nucleofected ex vivo to release bFGF or VEGF165 in a hindlimb ischemia model in vivo. After femoral artery ligation, gene-modified cells were injected intramuscularly. One week post injection, local confined plasmid expression and transient distributions of the plasmids in other organs were detected by quantitative PCR. Quantitative micro-CT analyses showed improvements of vascularization in the ischemic zone (No. of collateral vessels via micro CT: 6.8±2.3 vs. 10.1±2.6; p<0.05). Moreover, improved collateral proliferation (BrdU incorporation: 0.48±0.05 vs. 0.57±0.05; p<0.05) and increase in blood perfusion (microspheres ratio: gastrocnemius: 0.41±0.10 vs. 0.50±0.11; p<0.05; soleus ratio: soleus: 0.42±0.08 vs. 0.60±0.08; p<0.01) in the lower hindlimb were also observed. CONCLUSIONS: These results demonstrate the feasibility and effectiveness of double transplantation of gene nucleofected primary fibroblasts in producing growth factors and promoting the formation of collateral circulation in ischemic hindlimb, suggesting that isolation and preparation of gene nucleofected cells from individual accepting gene therapy may be an alternative strategy for treating limb ischemia related diseases

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A Review on Application of Biochar in the Removal of Pharmaceutical Pollutants through Adsorption and Persulfate-Based AOPs

    No full text
    Increasing quantities of pharmaceutical pollutants have been found in aquatic ecosystems. The treatment of pharmaceutical pollutants has been a major task that people have been committed to in recent years. The removal of pharmaceutical pollutants can be achieved by adsorption and advanced oxidation processes (AOPs). Compared with other carbon materials, biochar has a strong adsorption capacity and persulfate activation ability, and more importantly, biochar is cheap and easy to obtain; thus, it has higher economic benefits. This study firstly reviews the application of biochar in the removal of drugs (tetracycline (TC), sulfamethoxazole (SMX), acetaminophen (ACT), cephalexin (CPX), levofloxacin (LEV), etc.) through adsorption and persulfate-based AOPs. In addition, we summarize the adsorption mechanism of biochar for various pharmaceutical pollutants and the main attack sites on different pharmaceutical pollutants in persulfate-based AOPs catalyzed by biochar. Finally, the challenges and prospects of biochar with respect to the removal of pharmaceutical pollutants are put forward

    A case of Norwegian scabies diagnosed with the aid of dermoscopy

    No full text
    To report a case of Norwegian scabies diagnosed with the aid of dermoscopy. A 78-year-old man suffered from generalized papules, papulovesicles and nodules with pruritus for 2 years. Patient had been repeatedly diagnosed as eczema or nodular prurigo or urticaria. Topical antihistamines and glucocorticoids only slightly improved lesions, but not pruritus. Dermatological examination showed dense papules, papulovesicles and nodules on the trunk and limbs, especially on the elbows, armpits, buttocks and thighs. Some lesions were covered with scales. Chaffy scales were present on the hands, fingers/toe gaps and buttocks, with fishy odour smell. Dermoscopy showed white burrows in appearance of delta-wing jet. Mites and secretion were observed in the burrows along with triangular structure on the other end of the burrows. A diagnosis of Norwegian scabies was made. Pruritus and skin lesions were significantly improved after 2-week twice-daily treatment with topical 25% sulfur ointment plus desonide cream in addition to oral epinastine capsule and decoction of Chinese medicine. No recurrence was observed during a 2-month follow-up

    Degradation of Tetracycline in Water by Fe-Modified Sterculia Foetida Biochar Activated Peroxodisulfate

    No full text
    Tetracycline (TC) is a broad-spectrum antibiotic commonly, made use of in aquaculture and animal husbandry. After entering water bodies, it will represent a major threat to human health. In this study, sterculia foetida biochar (SFC) was readied by the combined hydrothermal pyrolysis (co-HTP) method with sterculia foetida as raw materials. Fen-SFC (Fe2-SFC, Fe3-SFC, and Fe4-SFC) was obtained by doping SFH with different concentrations of FeCl3. Finally, activation of peroxodisulfate (PDS) was achieved, using Fe3-SFC to degrade TC. The degradation of TC obeyed pseudo-second-order kinetics, and the constant of the reaction rate was 0.491 L mg&minus;1 min&minus;1. Radical trapping experiments, EPR test and electrochemical tests evidenced that the high catalytic performance of the Fe3-SFC/PDS system was ascribed to free radical pathway (&bull;OH and SO4&bull;&minus;) and non-radical pathway (1O2 and electron transfer), in which the latter plays a dominant role. This research not only demonstrates a new kind of biochar as an effective catalyst for PS activation, but also offers an avenue for the value-added reuse of sterculia foetida

    Degradation of Tetracycline in Water by Fe-Modified Sterculia Foetida Biochar Activated Peroxodisulfate

    No full text
    Tetracycline (TC) is a broad-spectrum antibiotic commonly, made use of in aquaculture and animal husbandry. After entering water bodies, it will represent a major threat to human health. In this study, sterculia foetida biochar (SFC) was readied by the combined hydrothermal pyrolysis (co-HTP) method with sterculia foetida as raw materials. Fen-SFC (Fe2-SFC, Fe3-SFC, and Fe4-SFC) was obtained by doping SFH with different concentrations of FeCl3. Finally, activation of peroxodisulfate (PDS) was achieved, using Fe3-SFC to degrade TC. The degradation of TC obeyed pseudo-second-order kinetics, and the constant of the reaction rate was 0.491 L mg−1 min−1. Radical trapping experiments, EPR test and electrochemical tests evidenced that the high catalytic performance of the Fe3-SFC/PDS system was ascribed to free radical pathway (•OH and SO4•−) and non-radical pathway (1O2 and electron transfer), in which the latter plays a dominant role. This research not only demonstrates a new kind of biochar as an effective catalyst for PS activation, but also offers an avenue for the value-added reuse of sterculia foetida

    PDK4 Constitutes a Novel Prognostic Biomarker and Therapeutic Target in Gastric Cancer

    No full text
    Gastric cancer (GC) is one of the most prevalent and deadly malignancies worldwide. We aimed to assess the functional role and clinical significance of pyruvate dehydrogenase kinase (PDK) in GC and explored the underlying mechanisms. The bioinformatics method was used to investigate the expression of PDKs in GC, the effect on clinical outcomes, enriched pathways, interactive network, and the correlation between PDK4 and immune infiltration. Next, PDK expression in the GC cells and tissues were verified by qRT-PCR and western blotting. A Cell Counting Kit-8 (CCK8), colony-formation, Flow cytometry, Transwell and wound healing assays were carried out to evaluate the influence of PDK4 on cell proliferation, invasion and migration. Among PDKs, PDK4 expression was aberrant in GC and identified as an independent prognostic factor. GO analysis, GSEA, and PPI showed that PDK4 expression may regulate cell adhesion, metal ion transport, synaptic activity, and cancer cell metabolism in GC. Analyses of immune infiltration showed that PDK4 correlated with the abundant expression of various immunocytes. Finally, we verified that upregulation of PDK4 expression enhanced the ability of GC cells to proliferate, migrate, and invade. In conclusion, PDK4 was identified as a potential candidate diagnostic biomarker and therapeutic target for GC patients
    corecore