10 research outputs found

    Modeling, Testing and Executing Reo Connectors with the Eclipse Coordination Tools

    Get PDF
    We present in this paper the Eclipse Coordination Tools (ECT), a set of visual tools for modeling, testing and executing Reo connector in the Eclipse development environment

    Coordination via Interaction Constraints I: Local Logic

    Full text link
    Wegner describes coordination as constrained interaction. We take this approach literally and define a coordination model based on interaction constraints and partial, iterative and interactive constraint satisfaction. Our model captures behaviour described in terms of synchronisation and data flow constraints, plus various modes of interaction with the outside world provided by external constraint symbols, on-the-fly constraint generation, and coordination variables. Underlying our approach is an engine performing (partial) constraint satisfaction of the sets of constraints. Our model extends previous work on three counts: firstly, a more advanced notion of external interaction is offered; secondly, our approach enables local satisfaction of constraints with appropriate partial solutions, avoiding global synchronisation over the entire constraints set; and, as a consequence, constraint satisfaction can finally occur concurrently, and multiple parts of a set of constraints can be solved and interact with the outside world in an asynchronous manner, unless synchronisation is required by the constraints. This paper describes the underlying logic, which enables a notion of local solution, and relates this logic to the more global approach of our previous work based on classical logic

    Contents

    No full text

    Modeling dynamic reconfigurations in Reo using high-level replacement systems

    Get PDF
    AbstractReo is a channel-based coordination language, wherein circuit-like connectors model and implement interaction protocols in heterogeneous environments that coordinate components or services. Connectors are constructed from primitive channels and can be reconfigured dynamically. Reconfigurations can even execute within a pending I/O transaction. In this article, we formally model and analyze dynamic reconfigurations and show how running coordinators can be reconfigured without the cooperation of their engaged components.We utilize the theory of high-level replacement systems to model rule-based reconfigurations of connectors. This allows us to perform a complex reconfiguration as an atomic step and analyze it using formal verification techniques. Specifically, we formalize the structure of connectors as typed hypergraphs and use critical pair and state space analyses for verification of dynamic reconfigurations. We provide a full implementation of our approach in a framework that includes tools for the definition, analysis, and execution of reconfigurations, and is integrated with two execution engines for Reo. Our framework, moreover, integrates with the graph transformation tools AGG and GROOVE for formal analysis, as well as the Eclipse platform and standard web service technologies

    Modeling, Testing and Executing Reo Connectors with the Eclipse Coordination Tools

    No full text
    We present in this paper the Eclipse Coordination Tools (ECT), a set of visual tools for modeling, testing and executing Reo connector in the Eclipse development environment
    corecore