245 research outputs found

    EduSAT: A Pedagogical Tool for Theory and Applications of Boolean Satisfiability

    Full text link
    Boolean Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) are widely used in automated verification, but there is a lack of interactive tools designed for educational purposes in this field. To address this gap, we present EduSAT, a pedagogical tool specifically developed to support learning and understanding of SAT and SMT solving. EduSAT offers implementations of key algorithms such as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm and the Reduced Order Binary Decision Diagram (ROBDD) for SAT solving. Additionally, EduSAT provides solver abstractions for five NP-complete problems beyond SAT and SMT. Users can benefit from EduSAT by experimenting, analyzing, and validating their understanding of SAT and SMT solving techniques. Our tool is accompanied by comprehensive documentation and tutorials, extensive testing, and practical features such as a natural language interface and SAT and SMT formula generators, which also serve as a valuable opportunity for learners to deepen their understanding. Our evaluation of EduSAT demonstrates its high accuracy, achieving 100% correctness across all the implemented SAT and SMT solvers. We release EduSAT as a python package in .whl file, and the source can be identified at https://github.com/zhaoy37/SAT_Solver

    Electric field-tunable layer polarization in graphene/boron nitride twisted quadrilayer superlattices

    Full text link
    The recently observed unconventional ferroelectricity in AB bilayer graphene sandwiched by hexagonal Boron Nitride (hBN) presents a new platform to manipulate correlated phases in multilayered van der Waals heterostructures. We present a low-energy continuum model for AB bilayer graphene encapsulated by the top and bottom layers of either hBN or graphene, with two independent twist angles. For the graphene/hBN heterostructures, we show that twist angle asymmetry leads to a layer polarization of the valence and conduction bands. We also show that an out-of-plane displacement field not only tunes the layer polarization but also flattens the low-energy bands. We extend the model to show that the electronic structures of quadrilayer graphene heterostructure consisting of AB bilayer graphene encapsulated by the top and bottom graphene layers can similarly be tuned by an external electric field

    Fairguard: Harness Logic-based Fairness Rules in Smart Cities

    Full text link
    Smart cities operate on computational predictive frameworks that collect, aggregate, and utilize data from large-scale sensor networks. However, these frameworks are prone to multiple sources of data and algorithmic bias, which often lead to unfair prediction results. In this work, we first demonstrate that bias persists at a micro-level both temporally and spatially by studying real city data from Chattanooga, TN. To alleviate the issue of such bias, we introduce Fairguard, a micro-level temporal logic-based approach for fair smart city policy adjustment and generation in complex temporal-spatial domains. The Fairguard framework consists of two phases: first, we develop a static generator that is able to reduce data bias based on temporal logic conditions by minimizing correlations between selected attributes. Then, to ensure fairness in predictive algorithms, we design a dynamic component to regulate prediction results and generate future fair predictions by harnessing logic rules. Evaluations show that logic-enabled static Fairguard can effectively reduce the biased correlations while dynamic Fairguard can guarantee fairness on protected groups at run-time with minimal impact on overall performance.Comment: This paper was accepted by the 8th ACM/IEEE Conference on Internet of Things Design and Implementatio

    LoG-CAN: local-global Class-aware Network for semantic segmentation of remote sensing images

    Full text link
    Remote sensing images are known of having complex backgrounds, high intra-class variance and large variation of scales, which bring challenge to semantic segmentation. We present LoG-CAN, a multi-scale semantic segmentation network with a global class-aware (GCA) module and local class-aware (LCA) modules to remote sensing images. Specifically, the GCA module captures the global representations of class-wise context modeling to circumvent background interference; the LCA modules generate local class representations as intermediate aware elements, indirectly associating pixels with global class representations to reduce variance within a class; and a multi-scale architecture with GCA and LCA modules yields effective segmentation of objects at different scales via cascaded refinement and fusion of features. Through the evaluation on the ISPRS Vaihingen dataset and the ISPRS Potsdam dataset, experimental results indicate that LoG-CAN outperforms the state-of-the-art methods for general semantic segmentation, while significantly reducing network parameters and computation. Code is available at~\href{https://github.com/xwmaxwma/rssegmentation}{https://github.com/xwmaxwma/rssegmentation}.Comment: Accepted at ICASSP 202

    In silico and in vitro drug screening identifies new therapeutic approaches for Ewing sarcoma.

    Get PDF
    The long-term overall survival of Ewing sarcoma (EWS) patients remains poor; less than 30% of patients with metastatic or recurrent disease survive despite aggressive combinations of chemotherapy, radiation and surgery. To identify new therapeutic options, we employed a multi-pronged approach using in silico predictions of drug activity via an integrated bioinformatics approach in parallel with an in vitro screen of FDA-approved drugs. Twenty-seven drugs and forty-six drugs were identified, respectively, to have anti-proliferative effects for EWS, including several classes of drugs in both screening approaches. Among these drugs, 30 were extensively validated as mono-therapeutic agents and 9 in 14 various combinations in vitro. Two drugs, auranofin, a thioredoxin reductase inhibitor, and ganetespib, an HSP90 inhibitor, were predicted to have anti-cancer activities in silico and were confirmed active across a panel of genetically diverse EWS cells. When given in combination, the survival rate in vivo was superior compared to auranofin or ganetespib alone. Importantly, extensive formulations, dose tolerance, and pharmacokinetics studies demonstrated that auranofin requires alternative delivery routes to achieve therapeutically effective levels of the gold compound. These combined screening approaches provide a rapid means to identify new treatment options for patients with a rare and often-fatal disease

    Multi-Agent Reinforcement Learning Guided by Signal Temporal Logic Specifications

    Full text link
    Reward design is a key component of deep reinforcement learning, yet some tasks and designer's objectives may be unnatural to define as a scalar cost function. Among the various techniques, formal methods integrated with DRL have garnered considerable attention due to their expressiveness and flexibility to define the reward and requirements for different states and actions of the agent. However, how to leverage Signal Temporal Logic (STL) to guide multi-agent reinforcement learning reward design remains unexplored. Complex interactions, heterogeneous goals and critical safety requirements in multi-agent systems make this problem even more challenging. In this paper, we propose a novel STL-guided multi-agent reinforcement learning framework. The STL requirements are designed to include both task specifications according to the objective of each agent and safety specifications, and the robustness values of the STL specifications are leveraged to generate rewards. We validate the advantages of our method through empirical studies. The experimental results demonstrate significant reward performance improvements compared to MARL without STL guidance, along with a remarkable increase in the overall safety rate of the multi-agent systems

    Organ-Specific Transcriptome Analysis Identifies Candidate Genes Involved in the Stem Specialization of Bermudagrass (Cynodon dactylon L.)

    Get PDF
    As an important warm-season turfgrass and forage grass species with wide applications, bermudagrass (Cynodon dactylon L.) simultaneously has shoot, stolon and rhizome, three types of stems with different physiological functions. To better understand how the three types of stems differentiate and specialize, we generated an organ-specific transcriptome dataset of bermudagrass encompassing 114,169 unigenes, among which 100,878 and 65,901 could be assigned to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Gene Ontology (GO) terms, respectively. Using the dataset, we comprehensively analyzed the gene expression of different organs, especially the shoot, stolon and rhizome. The results indicated that six organs of bermudagrass all contained more than 52,000 significantly expressed unigenes, however, only 3,028 unigenes were enrich-expressed in different organs. Paired comparison analyses further indicated that 11,762 unigenes were differentially expressed in the three types of stems. Gene enrichment analysis revealed that 39 KEGG pathways were enriched with the differentially expressed unigenes (DEGs). Specifically, 401 DEGs were involved in plant hormone signal transduction, whereas 1,978 DEGs were transcription factors involved in gene expression regulation. Furthermore, in agreement with the starch content and starch synthase assay results, DEGs encoding starch synthesis-related enzymes all showed the highest expression level in the rhizome. These results not only provided new insights into the specialization of stems in bermudagrass but also made solid foundation for future gene functional studies in this important grass species and other stoloniferous/rhizomatous plants

    High Prevalence of blaNDM Variants Among Carbapenem-Resistant Escherichia coli in Northern Jiangsu Province, China

    Get PDF
    The continuous emergence of carbapenem-resistant Escherichia coli (CRECO) presents a great challenge to public health. New Delhi metallo-lactamase (NDM) variants are widely disseminated in China, so the research on the prevalence and transmission of diverse blaNDM variants is urgently needed. In the present study, 54 CRECO isolates were collected from 1,185 Escherichia coli isolates in five hospitals in Northern Jiangsu Province, China from September 2015 to August 2016. Antimicrobial susceptibility tests, PCR detection of resistance determinants, multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed to characterize these strains. Plasmid conjugation experiments were carried out to determine the transferability of resistant genes from selected isolates. PCR-based replicon typing (PBRT), S1 nuclease-PFGE, and Southern blotting were conducted for plasmid profiling. Carbapenemase genes were detectable in all CRECO isolates, among which thirty-one CRECO isolates were found to carry blaNDM−5 (54.7%), while, blaNDM−1, blaNDM−7, blaNDM−4, blaNDM−9, and blaKPC−2 were identified in 14, five, two, one, and one isolates, respectively. MLST results revealed 15 different STs and four new STs were first reported to be linked with NDM-producing isolates. PFGE typing showed that no more than two isolates with the same ST appeared to the same band pattern except three ST410 isolates. Twenty-six selected NDM-producing isolates were successfully transferred to E. coli J53 by conjugation experiments. Notably, 50.0% (13/26) of blaNDM variants were found to be carried by ~55 kb IncX3 plasmid. Our study reported a high prevalence of blaNDM variants, especially blaNDM−5, in Northern Jiangsu province, China. Diverse blaNDM variants were mainly carried by ~55 kb IncX3 plasmids, suggesting that the fast evolution and high transferability of this kind of plasmid promote the high prevalence of blaNDM variants. Therefore, large-scale surveillance and effective infection control measures are also urgently needed to prevent diverse blaNDM variants from becoming epidemic in the future
    • …
    corecore