149 research outputs found
Isotropic Magnetic Purcell Effect
Manipulating the spontaneous emission rate of optical emitters with
all-dielectric nanoparticles benefits from their low-loss nature and thus
provides relatively large extrinsic quantum yield. However, such Purcell effect
greatly depends on the orientation of the dipole emitter. Here, we introduce
the concept of isotropic magnetic Purcell effect with Purcell factors about 300
and large extrinsic quantum yield (more than 80%) for a magnetic dipole emitter
of arbitrary orientation in an asymmetric silicon nanocavity. The extrinsic
quantum yield can be even boosted up to nearly 100% by utilizing a GaP
nanocavity. Isotropy of the Purcell factor is manifested via the
orientation-independent emission of the magnetic dipole source. This isotropic
Purcell effect is robust against small displacement of emitter on the order of
10 nm, releasing the requirement of precise alignment in experiments.Comment: 18 pages, 5 figure
Computer Forensics Model Based on Evidence Ring and Evidence Chain
AbstractIn recent years, with the development of technology, judicial practice involving electronic crime is frequent. To combat this crime, computer forensics bears the irreplaceable role. This is a combination science of law and computer, but there is a “mismatch” phenomenon exists on the research on computer forensics currently, most of them only study the technical aspects of computer or electronic evidence related to legal issues, the two studies combined less. To solve this problem, in this paper, evidence of the general attributes: objectivity, relevance, legitimacy as a criterion to build a computer forensics model based on ring and chain of evidence. In this model, forensic evidence of links forms a ring, in accordance with the forensic to form chain of evidence. In order to ensure the objectivity, legitimacy of evidence, in building a chain of evidence and evidence ring as well as a supervisory chain in supervision, the final forms a electronic evidence forensics system
Amplification and adaptation of centromeric repeats in polyploid switchgrass species.
Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats from a single satellite repeat family. Why centromeres are dominated by a single satellite repeat and how the satellite repeats originate and evolve are among the most intriguing and long-standing questions in centromere biology. We identified eight satellite repeats in the centromeres of tetraploid switchgrass (Panicum virgatum). Seven repeats showed characteristics associated with classical centromeric repeats with monomeric lengths ranging from 166 to 187Â bp. Interestingly, these repeats share an 80-bp DNA motif. We demonstrate that this 80-bp motif may dictate translational and rotational phasing of the centromeric repeats with the cenH3 nucleosomes. The sequence of the last centromeric repeat, Pv156, is identical to the 5S ribosomal RNA genes. We demonstrate that a 5S ribosomal RNA gene array was recruited to be the functional centromere for one of the switchgrass chromosomes. Our findings reveal that certain types of satellite repeats, which are associated with unique sequence features and are composed of monomers in mono-nucleosomal length, are favorable for centromeres. Centromeric repeats may undergo dynamic amplification and adaptation before the centromeres in the same species become dominated by the best adapted satellite repeat
Through the Lens of Core Competency: Survey on Evaluation of Large Language Models
From pre-trained language model (PLM) to large language model (LLM), the
field of natural language processing (NLP) has witnessed steep performance
gains and wide practical uses. The evaluation of a research field guides its
direction of improvement. However, LLMs are extremely hard to thoroughly
evaluate for two reasons. First of all, traditional NLP tasks become inadequate
due to the excellent performance of LLM. Secondly, existing evaluation tasks
are difficult to keep up with the wide range of applications in real-world
scenarios. To tackle these problems, existing works proposed various benchmarks
to better evaluate LLMs. To clarify the numerous evaluation tasks in both
academia and industry, we investigate multiple papers concerning LLM
evaluations. We summarize 4 core competencies of LLM, including reasoning,
knowledge, reliability, and safety. For every competency, we introduce its
definition, corresponding benchmarks, and metrics. Under this competency
architecture, similar tasks are combined to reflect corresponding ability,
while new tasks can also be easily added into the system. Finally, we give our
suggestions on the future direction of LLM's evaluation
Probiotics, Prebiotics, and Synbiotics Improve Uremic, Inflammatory, and Gastrointestinal Symptoms in End-Stage Renal Disease With Dialysis: A Network Meta-Analysis of Randomized Controlled Trials
BackgroundProbiotics, prebiotics, and synbiotics are three different supplements to treat end stage renal disease (ESRD) patients by targeting gut bacteria. The comprehensive comparison of the effectiveness of different supplements are lacking.ObjectivesThe purpose of this network meta-analysis (NMA) is to assess and rank the efficacy of probiotics, prebiotics, and synbiotics on inflammatory factors, uremic toxins, and gastrointestinal symptoms (GI symptoms) in ESRD patients undergoing dialysis.MethodsRandomized clinical trials were searched from the PubMed, Embase, and Cochrane Register of Controlled Trials databases, from their inception until 4 September 2021. Random-effect model were used to obtain all estimated outcomes in network meta-analysis (NMA). Effect estimates were presented as mean differences (Mean ± SD) with 95% confidence interval (CI). The comprehensive effects of all treatments were ranked by the surface under the cumulative ranking (SUCRA) probabilities.ResultsTwenty-five studies involved 1,106 participants were included. Prebiotics were superior in decreasing Interleukin-6 (IL-6; SMD –0.74, 95% CI [–1.32, –0.16]) and tumor-necrosis factor-α (TNF-α; SMD –0.59, 95% CI [–1.09, –0.08]), synbiotics were more effective in declining C-reactive protein (CRP; SMD –0.69, 95% CI [–1.14, –0.24]) and endotoxin (SMD –0.83, 95% CI [–1.38, –0.27]). Regarding uremic toxins, prebiotics ranked highest in reducing indoxyl sulfate (IS; SMD –0.43, 95% CI [–0.81, –0.05]), blood urea nitrogen (BUN; SMD –0.42, 95% CI [–0.78, –0.06]), and malondialdehyde (MDA; SMD –1.88, 95% CI [–3.02, –0.75]). Probiotics were rated as best in alleviating GI symptoms (SMD: –0.52, 95% CI [–0.93, –0.1]).ConclusionOur research indicated prebiotics were more effective in declining IL-6, TNF-α, IS, MDA, and BUN, synbiotics lowering CRP and endotoxin significantly, and probiotics were beneficial for alleviating GI symptoms, which may contribute to better clinical decisions. This study was registered in PROSPERO (Number: CRD42021277056).Systematic Review Registration[http://www.crd.york.ac.uk/PROSPERO], identifier [CRD42021277056]
A Review of Fibre Reinforced Polymer (FRP) Reinforced Concrete Composite Column Members Modelling and Analysis Techniques
The use of fibre-reinforced polymer (FRP) to confine concrete columns improves the strength and ductility of the columns by reducing passive lateral confinement pressure. Many numerical and analytical formulations have been proposed in the literature to describe the compressive behaviour of FRP confined concrete under both monotonic and cyclic loads. However, the effect of a stress/strain level in the columns has not been well defined because of the lack of well-defined strategies of modelling and oversimplification of the model. This paper reviews the existing FRP combinations and the available numerical and analytical methods to determine the effectiveness of the adopted method. An effort has been made to examine the usage of FRP materials in column applications in existing building regimes and highlights the possible future scopes to improve the use of FRP confined concrete in civil applications
WaterScenes: A Multi-Task 4D Radar-Camera Fusion Dataset and Benchmark for Autonomous Driving on Water Surfaces
Autonomous driving on water surfaces plays an essential role in executing
hazardous and time-consuming missions, such as maritime surveillance, survivors
rescue, environmental monitoring, hydrography mapping and waste cleaning. This
work presents WaterScenes, the first multi-task 4D radar-camera fusion dataset
for autonomous driving on water surfaces. Equipped with a 4D radar and a
monocular camera, our Unmanned Surface Vehicle (USV) proffers all-weather
solutions for discerning object-related information, including color, shape,
texture, range, velocity, azimuth, and elevation. Focusing on typical static
and dynamic objects on water surfaces, we label the camera images and radar
point clouds at pixel-level and point-level, respectively. In addition to basic
perception tasks, such as object detection, instance segmentation and semantic
segmentation, we also provide annotations for free-space segmentation and
waterline segmentation. Leveraging the multi-task and multi-modal data, we
conduct numerous experiments on the single modality of radar and camera, as
well as the fused modalities. Results demonstrate that 4D radar-camera fusion
can considerably enhance the robustness of perception on water surfaces,
especially in adverse lighting and weather conditions. WaterScenes dataset is
public on https://waterscenes.github.io
Apolipoprotein E deficiency potentiates macrophage against Staphylococcus aureus in mice with osteomyelitis via regulating cholesterol metabolism
IntroductionStaphylococcus aureus (S. aureus) osteomyelitis causes a variety of metabolism disorders in microenvironment and cells. Defining the changes in cholesterol metabolism and identifying key factors involved in cholesterol metabolism disorders during S. aureus osteomyelitis is crucial to understanding the mechanisms of S. aureus osteomyelitis and is important in designing host-directed therapeutic strategies.MethodsIn this study, we conducted in vitro and in vivo experiments to define the effects of S. aureus osteomyelitis on cholesterol metabolism, as well as the role of Apolipoprotein E (ApoE) in regulating cholesterol metabolism by macrophages during S. aureus osteomyelitis.ResultsThe data from GSE166522 showed that cholesterol metabolism disorder was induced by S. aureus osteomyelitis. Loss of cholesterol from macrophage obtained from mice with S. aureus osteomyelitis was detected by liquid chromatography-tandem mass spectrometry(LC-MS/MS), which is consistent with Filipin III staining results. Changes in intracellular cholesterol content influenced bactericidal capacity of macrophage. Subsequently, it was proven by gene set enrichment analysis and qPCR, that ApoE played a key role in developing cholesterol metabolism disorder in S. aureus osteomyelitis. ApoE deficiency in macrophages resulted in increased resistance to S. aureus. ApoE-deficient mice manifested abated bone destruction and decreased bacteria load. Moreover, the combination of transcriptional analysis, qPCR, and killing assay showed that ApoE deficiency led to enhanced cholesterol biosynthesis in macrophage, ameliorating anti-infection ability.ConclusionWe identified a previously unrecognized role of ApoE in S. aureus osteomyelitis from the perspective of metabolic reprogramming. Hence, during treating S. aureus osteomyelitis, considering cholesterol metabolism as a potential therapeutic target presents a new research direction
- …