2 research outputs found

    Resonant Chiral Effects in Nonlinear Dielectric Metasurfaces

    No full text
    We study the resonant enhancement of linear and nonlinear chiroptical effects in planar silicon metasurfaces with an in-plane asymmetry supporting multipolar Mie resonances and quasi-bound states in the continuum (quasi-BICs). We demonstrate theoretically and observe in experiment the pronounced linear circular dichroism at the quasi-BIC resonances originating from the interaction of modes with the substrate. We further find that both local field enhancement and third-harmonic signal are large for Mie resonances and some quasi-BIC modes due to the critical coupling. We demonstrate experimentally a strong nonlinear chiroptical response associated with high efficiency of the third-harmonic generation and large nonlinear circular dichroism varying from +0.918 ± 0.049 to −0.771 ± 0.004 for the samples with different asymmetries. We reveal the nonreciprocal nature of nonlinear chirality governed by the microscopic symmetry of nonlinearities and macroscopic symmetries of the meta-atom and metasurface lattice. We believe our results suggest a general strategy for engineering nonlinear chiroptical response in dielectric resonant metasurfaces

    A Centimeter-Scale Dielectric Metasurface for the Generation of Cold Atoms

    No full text
    The single-beam magneto-optical trap (MOT) based on the diffractive optical element offers a new route to develop compact cold atom sources. However, the optical efficiency in the previous single-beam MOT systems is usually low and unbalanced, which will affect the quality of the trapped atoms. To solve this issue, we developed a centimeter-scale dielectric metasurface optical chip with dynamic phase distributions, which was used to split a single incident laser beam into five separate ones with well-defined polarization states and uniform energy distributions. The measured diffraction efficiency of the metasurface is up to 47%. A single-beam MOT integrated with the metasurface optical chip was then used to trap the 87Rb atoms with numbers ∼1.4 × 108 and temperatures ∼7.0 μK. The proposed concept in this work may provide a promising solution for developing ultracompact cold atom sources
    corecore