19 research outputs found

    Valley: Video Assistant with Large Language model Enhanced abilitY

    Full text link
    Large language models (LLMs), with their remarkable conversational capabilities, have demonstrated impressive performance across various applications and have emerged as formidable AI assistants. In view of this, it raises an intuitive question: Can we harness the power of LLMs to build multimodal AI assistants for visual applications? Recently, several multi-modal models have been developed for this purpose. They typically pre-train an adaptation module to align the semantics of the vision encoder and language model, followed by fine-tuning on instruction-following data. However, despite the success of this pipeline in image and language understanding, its effectiveness in joint video and language understanding has not been widely explored. In this paper, we aim to develop a novel multi-modal foundation model capable of comprehending video, image, and language within a general framework. To achieve this goal, we introduce Valley, a Video Assistant with Large Language model Enhanced abilitY. The Valley consists of a LLM, a temporal modeling module, a visual encoder, and a simple projection module designed to bridge visual and textual modes. To empower Valley with video comprehension and instruction-following capabilities, we construct a video instruction dataset and adopt a two-stage tuning procedure to train it. Specifically, we employ ChatGPT to facilitate the construction of task-oriented conversation data encompassing various tasks, including multi-shot captions, long video descriptions, action recognition, causal relationship inference, etc. Subsequently, we adopt a pre-training-then-instructions-tuned pipeline to align visual and textual modalities and improve the instruction-following capability of Valley. Qualitative experiments demonstrate that Valley has the potential to function as a highly effective video assistant that can make complex video understanding scenarios easy

    TZ-MRAS: A Remote Attestation Scheme for the Mobile Terminal Based on ARM TrustZone

    No full text
    With the widespread use of mobile embedded devices in the Internet of Things, mobile office, and edge computing, security issues are becoming more and more serious. Remote attestation, one of the mobile security solutions, is a process of verifying the identity and integrity status of the remote computing device, through which the challenger determines whether the platform is trusted by discovering an unknown fingerprint. The remote attestation on the mobile terminal faces many security challenges presently because there is a lack of trusted roots, devices are heterogeneous, and hardware resources are strictly limited. To ARM’s mobile platform, we propose a mobile remote attestation scheme based on ARM TrustZone (TZ-MRAS), which uses the highest security authority of TrustZone to implement trusted attestation service. Compared with the existing mobile remote attestation scheme, it has the advantages of wide application, easy deployment, and low cost. To defend against the time-of-check-to-time-of-use (TOC-TOU) attack, we propose a probe-based dynamic integrity measurement model, ProbeIMA, which can dynamically detect unknown fingerprints that generate during kernel and process execution. Finally, according to the characteristics of the improved dynamic measurement model, that is, the ProbeIMA will expand the scale of the measurement dataset, an optimized stored measurement log construction algorithm based on the locality principle (LPSML) is proposed, which has the advantages of shortening the length of the authentication path and improving the verification efficiency of the platform configuration. As a proof of concept, we implemented a prototype for each service and made experimental evaluations. The experimental results show the proposed scheme has higher security and efficiency than some existing schemes

    Cable Force Optimization of Cable-Stayed Bridge Based on Multiobjective Particle Swarm Optimization Algorithm with Mutation Operation and the Influence Matrix

    No full text
    To compensate the incapability of traditional cable force adjustment methods to automatically optimize cable forces, this paper proposes Midas/Civil and MATLAB as a structure calculator and a cable force optimizer, and external memory as a data transfer. Initial solutions from conventional methods can be optimized by internalizing the influence matrix into the multiobjective particle swarm optimization algorithm with mutation operation and constructing the mathematical model of cable force optimization, and then, a series of Pareto frontier solution sets are obtained. For the first time, fuzzy set theory is introduced for selecting Pareto presolution set for the optimization of cable-stayed bridges, to solve the final reasonable dead load state of bridges. By using this method, the peak vertical displacement of a main girder of the optimized cable-stayed bridge decreased from −11 mm to −6 mm, with a reduction of 45%. Before and after optimization, the difference of peak negative bending moment at the top of the pier was 34.8%, indicating that the main beam was more evenly stressed and the alignment was more reasonable

    Echocardiographic characteristics of primary malignant pericardial mesothelioma and outcomes analysis: a retrospective study

    No full text
    Abstract Background Little is known about the echocardiographic characteristics of primary malignant pericardial mesothelioma (PPM) due to its rarity. The aim of this study was to explore the sex-specific echocardiographic patterns of PPM and risk factors for in-hospital mortality. Methods A retrospective information retrieval was conducted for cases of PPM reported from China during 1981 and 2015. The diagnosis was made by histopathological examinations and only cases with echocardiographic descriptions were included. Data on the clinical and echocardiographic findings were collected. Difference in clinical, sex-specific echocardiographic characteristics and findings across different time periods were assessed. Logistic regression analysis was performed to explore echocardiographic risk factors for in-hospital mortality. Results A total of 64 patients with PPM were included, with a mean age of 39.2 ± 15.6 years and minor male dominance (40, 62.5%). The most common echocardiographic presentations were pericardial effusion (55, 85.9%), pericardial masses (36.4%) and thickening (17.3%), respectively. The positive rate of pericardiocentesis was only 20.9%. Six patients (15.4%) died among 39 cases reporting in-hospital outcome. Logistics analysis identified no clinical or echocardiographic parameters associated with in-hospital mortality (all P > 0.05). Conclusions The echocardiographic signs of PPM are basically nonspecific with massive pericardial effusion as the most common sign, although no echocardiographic gender differences or association with in-hospital mortality could be identified

    Understanding the Effects of Climate Change on the Distributional Range of Plateau Fish: A Case Study of Species Endemic to the Hexi River System in the Qinghai–Tibetan Plateau

    No full text
    Prediction of species’ potentially suitable distribution areas and their range shifts under future climate change has long been the focus of macroecology and biogeography. Gymnocypris chilianensis of Schizothoracinae and Triplophysa hsutschouensis of Triplophysa are isolated to the Shiyang, Heihe, and Shule Rivers of the Hexi River system, listed from east to west, along the northeastern part of the Qinghai–Tibetan Plateau (QTP). This spatial distribution provides a valuable set of conditions for investigating patterns of habitat suitability and potential impacts of accelerated plateau climate change on endemic plateau fish species. Here, we employed the maximum entropy (MaxEnt) model to first evaluate potentially suitable habitats of the two species and identify the primary impact factors under the current climate based on occurrence records and environmental variables; then, we predicted changes in suitable habitat areas and distribution centers under two representative concentration pathways (RCPs), 2.6 and 8.5, for the future (2050 and 2070). The results showed that annual precipitation and altitude were the two most important environmental factors predicting the suitable habitat of G. chilianensis and T. hsutschouensis. The areas of suitable habitat for G. chilianensis and T. hsutschouensis experienced a sequential westward decrease from the Shiyang River towards the Heihe and Shule Rivers under the current climate conditions. Under future climate changes, the areas of the potential geographical distribution of G. chilianensis and T. hsutschouensis were concentrated eastward towards the Shiyang River, the area of the species’ ancestral origins. Suitable habitat centers of the two species shifted eastward from the Heihe River to the Shiyang River and higher altitude areas. Additionally, G. chilianensis showed a greater reduction in suitable habitat and greater eastward range shift compared to T. hsutschouensis. These findings provide empirical evidence that accelerated climate change on the QTP has severe consequences for endemic populations with restricted and isolated habitats. This study demonstrates that different plateau fish have similarities and differences in their responses to climate change. Our findings also highlight that the effects of climate change must be incorporated into the integrated conservation plans for fish species on the QTP and its adjacent areas

    Understanding the Effects of Climate Change on the Distributional Range of Plateau Fish: A Case Study of Species Endemic to the Hexi River System in the Qinghai–Tibetan Plateau

    No full text
    Prediction of species’ potentially suitable distribution areas and their range shifts under future climate change has long been the focus of macroecology and biogeography. Gymnocypris chilianensis of Schizothoracinae and Triplophysa hsutschouensis of Triplophysa are isolated to the Shiyang, Heihe, and Shule Rivers of the Hexi River system, listed from east to west, along the northeastern part of the Qinghai–Tibetan Plateau (QTP). This spatial distribution provides a valuable set of conditions for investigating patterns of habitat suitability and potential impacts of accelerated plateau climate change on endemic plateau fish species. Here, we employed the maximum entropy (MaxEnt) model to first evaluate potentially suitable habitats of the two species and identify the primary impact factors under the current climate based on occurrence records and environmental variables; then, we predicted changes in suitable habitat areas and distribution centers under two representative concentration pathways (RCPs), 2.6 and 8.5, for the future (2050 and 2070). The results showed that annual precipitation and altitude were the two most important environmental factors predicting the suitable habitat of G. chilianensis and T. hsutschouensis. The areas of suitable habitat for G. chilianensis and T. hsutschouensis experienced a sequential westward decrease from the Shiyang River towards the Heihe and Shule Rivers under the current climate conditions. Under future climate changes, the areas of the potential geographical distribution of G. chilianensis and T. hsutschouensis were concentrated eastward towards the Shiyang River, the area of the species’ ancestral origins. Suitable habitat centers of the two species shifted eastward from the Heihe River to the Shiyang River and higher altitude areas. Additionally, G. chilianensis showed a greater reduction in suitable habitat and greater eastward range shift compared to T. hsutschouensis. These findings provide empirical evidence that accelerated climate change on the QTP has severe consequences for endemic populations with restricted and isolated habitats. This study demonstrates that different plateau fish have similarities and differences in their responses to climate change. Our findings also highlight that the effects of climate change must be incorporated into the integrated conservation plans for fish species on the QTP and its adjacent areas

    Diversity and distribution of fish in the Qilian Mountain Basin

    No full text
    The Qilian Mountain Basin, on the north-eastern edge of the Qinghai-Tibet Plateau (QTP), supports a high diversity of native and endemic fish. However, the detailed species inventory and distribution patterns concerning fish in the whole Basin remain unknown, which hinders the conservation of biodiversity and assessment of ecological health. We compiled a comprehensive species richness and distribution database of freshwater fish in the Qilian Mountain Basin, based on field investigations and exhaustive data collection from 50 rivers or lakes. Then, we elucidated a distribution pattern using clustering and ordination analyses based on a βdissim matrix with species presence/absence data. A total of 79 freshwater fish species within eight orders, 17 families and 42 genera were recorded. The Qilian Mountain Basin could be grouped into six systems, which match the six Basins (i.e. Heihe River Basin, HHR; Qaidam Basin, QDM; Qinghai Lake Basin, QHL; Shule River Basin, SLR; Shiyang River Basin, SYR; Yellow River Basin, YR), based on the fish distribution pattern. Additionally, the spatial pattern of species distribution showed the distance decay of taxonomic similarity. Our results demonstrate that riverine connectivity resulting from historical processes plays a vital role in shaping the freshwater ichthyofauna of High Central Asia. These findings will be valuable for future systematic conservation of fish in the Qilian Mountain Basin

    The Stabilizing of 1T-MoS<sub>2</sub> for All-Solid-State Lithium-Ion Batteries

    No full text
    All-solid-state batteries (SSBs) are prospective candidates for a range of energy accumulation systems, delivering higher energy densities compared to batteries which use liquid electrolytes. Amongst the numerous solid-state electrolytes (SEs), sulfide-based electrolytes in particular have received more attention given that they have a high ionic conductivity. However, the incompatibility between the electrode and SEs is still an ongoing challenge that leads to poor electrochemical performance. In this work, we focus on 1T-MoS2. It is well known that 1T metallic MoS2 is unstable even at room temperature. However, we showed that 1T-MoS2 can be stabilized at 600 °C for at least 2 h, and the 1T-MoS2-600 interlayer spacing expanded to 0.95 nm. The high crystallinity of the 1T phase is highly compatible with solid electrolytes and coupled with the increased interlayer spacing, so in the all-solid-state lithium-ion battery (ALLLIB), we achieved outstanding cycling performance. At the current density of 0.2 C (1 C = 670 mA g−1), this material delivered a capacity of 406 mA h g−1 after 50 cycles

    A Systematic Study on Berthing Capacity Assessment of Sanya Yazhou Fishing Port by Typhoon Prediction Model

    No full text
    This paper sheds light on the effect of combination modes on the evaluation of berthing capacity for Sanya Yazhou Fishing Port (SYFP) under hypothetical typhoon conditions. By statistically analysing the maximum probability of moving speeds and directions of historical typhoons passing through the fishing port, the representative typhoon path was determined with the nonparametric regression method. The designed typhoon wind fields of levels 12–17 were generated based on Holland’s parametric wind model. Then, the MIKE 21 BW model was used to obtain the high-precision wave distribution in the fishing port. The boundary conditions (significant wave height and peak period) of the MIKE 21 BW model were calculated by combining the MIKE 21 SW model with the designed typhoon wind fields. In SYFP, ships usually adopt the modes of multi-ship side-by-side and single anchor mooring during typhoons. In fair weather, approximately 158 vessels can be berthed if they are all large ones, while approximately 735 vessels can be moored if they are all small ones. However, with an increase in typhoon levels, the anchoring area for small vessels decreases. From the perspective of wave distribution in the fishing port, the number of large vessels moored was hardly affected by typhoons. This can be attributed to the breakwater, which significantly decreases the large wave height in the fishing port. Finally, a study on the framework of a method for hazard assessment of berthing capacity in the coming typhoon-driven storm waves was set up

    Surface Acidification of BiOI/TiO<sub>2</sub> Composite Enhanced Efficient Photocatalytic Degradation of Benzene

    No full text
    A novel BiOI/TiO2 nano-heterojunction was prepared using hydrothermal and sol-gel methods. The composite material was characterized by X-ray diffraction, ultraviolet-visible diffuse reflection spectroscopy, scanning electron microscopy, and transmission electron microscopy. The crystallinity and response to light of BiOI/TiO2 were controlled by preparation conditions such as the optimal solvent condition and heat treatment temperature. The photocatalytic activity of the BiOI/TiO2 catalyst was examined using benzene as a test molecule. The benzene degradation rate of the composite catalyst under visible light was enhanced compared to pure TiO2, thus reaching 40% of the original benzene concentration, which increased further to >60% after surface acidification. The fluorescence spectra, light current, and electron paramagnetic resonance confirmed that the enhanced activity was attributed to carrier separation by the heterojunction. The acid sites and active chlorine of hydrochloric acidification offer a novel mechanism for photocatalytic reactions
    corecore