8 research outputs found

    Additional file 3: Table S1. of Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo

    No full text
    Effect of baicalein treatment on cancer gene expression in the A549 cell line in-vitro. RNA was extracted from A549 cells following 1 ΌM baicalein treatment and corresponding control A549 cells (n = 2). cDNA was prepared from this RNA and gene expression profiling carried out using Taqman quantitative PCR arrays (Cancer Profiler Arrays, Superarray). Genes listed were found to be differentially regulated (greater than 2 fold increase/decrease) in the baicalein-treated tumour cells, relative to vehicle-treated controls. (TIFF 72 kb

    Additional file 4: Table S2. of Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo

    No full text
    Effect of baicalein treatment on cancer gene expression in the SKMES1 cell line in-vitro. RNA was extracted from SKMES1 cells following 1 ΌM baicalein treatment and corresponding control SKMES1 cells (n = 2). cDNA was prepared from this RNA and gene expression profiling carried out using Taqman quantitative PCR arrays (Cancer Profiler Arrays, Superarray). Genes listed were found to be differentially regulated (greater than 2 fold increase/decrease) in the baicalein-treated tumour cells, relative to vehicle-treated controls. (TIFF 73 kb

    Additional file 2: Figure S2. of Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo

    No full text
    Effect of 3 mg/kg baicalein treatment on NSCLC tumour growth in-vivo. A xenograft mouse model was generated using H-460 NSCLC cells. When tumour size reached approximately 50 mm3, animals were randomised into control and treatment groups (n = 7/group). Mice were administered either the 3 mg/Kg baicalein (dissolved in 50 Όl DMSO/PBS), or an equal volume of a vehicle control (20 % DMSO in PBS), by intra-tumoural injection (twice weekly). Baicalein treatment significantly prolonged survival of these xenograft mice relative to vehicle-treated controls (n = 7/group, *p < 0.05). However no additional survival was observed compared to the lower 1 mg/Kg dose. (TIFF 70 kb

    Additional file 1: Figure S1. of Anti-cancer effects of baicalein in non-small cell lung cancer in-vitro and in-vivo

    No full text
    Effect of baicalein treatment on lung tumour cell proliferation/survival in A549 and SKMES1 cell lines. Tumour cell proliferation was assessed following 24 h treatment (10 nM, 100 nM, 1 ΌM and 10 ΌM baicalein) by BrdU assay. Baicalein treatment resulted in a significant reduction in tumour cell survival in both the A549 (a) and SKMES1 cells (b). Data is expressed as mean ± SEM of three independent experiments, with cell proliferation expressed as a percentage of untreated controls (*p < 0.05, **p < 0.01). (TIFF 49 kb

    BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer

    No full text
    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.</p

    Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches

    No full text
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year‐on‐year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non‐vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.</p

    Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches

    No full text
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year‐on‐year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non‐vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.</p
    corecore