4 research outputs found

    Risk Factors for the Development of Hypokalemia in Neonatal Diarrheic Calves

    Get PDF
    BackgroundNeonatal diarrheic calves have a clear negative potassium balance because of intestinal losses and decreased milk intake but in the presence of acidemia, they usually show normokalemic or hyperkalemic plasma concentrations. ObjectivesTo assess whether marked hypokalemia occurs in response to the correction of acidemia and dehydration and to identify factors that are associated with this condition. AnimalsEighty-three calves with a clinical diagnosis of neonatal diarrhea. MethodsProspective cohort study. Calves were treated according to a clinical protocol using an oral electrolyte solution and commercially available packages of 8.4% sodium bicarbonate, 0.9% saline and 40% dextrose infusion solutions. ResultsThe proportion of hypokalemic calves after 24hours of treatment (19.3%) was twice as great as it was on admission to the hospital. Plasma K+ after 24hours of treatment was not significantly correlated to venous blood pH values at the same time but positively correlated to venous blood pH values on admission (r=0.51, P<.001). Base excess on admission (Odds ratio [OR]=0.81, 95% confidence interval [CI]=0.70-0.94),duration of diarrhea (OR=1.37, 95% CI=1.05-1.80),milk intake during hospitalization (OR=0.54, 95% CI=0.37-0.79) and plasma sodium concentrations after 24hours (OR=1.12, 95% CI=1.01-1.25) were identified to be independently associated (P<.05) with a hypokalemic state after 24hours of treatment. Conclusions and Clinical ImportanceFindings of this study suggest that marked depletion of body potassium stores is evident in diarrheic calves that suffered from marked metabolic acidosis, have a low milk intake and a long history of diarrhea

    Effects of Alkalinization and Rehydration on Plasma Potassium Concentrations in Neonatal Calves with Diarrhea

    Get PDF
    BackgroundIncreased plasma potassium concentrations (K+) in neonatal calves with diarrhea are associated with acidemia and severe clinical dehydration and are therefore usually corrected by intravenous administration of fluids containing sodium bicarbonate. ObjectivesTo identify clinical and laboratory variables that are associated with changes of plasma K+ during the course of treatment and to document the plasma potassium-lowering effect of hypertonic (8.4%) sodium bicarbonate solutions. AnimalsSeventy-one neonatal diarrheic calves. MethodsProspective cohort study. Calves were treated according to a clinical protocol using an oral electrolyte solution and commercially available packages of 8.4% sodium bicarbonate (250-750mmol),0.9% saline (5-10L),and 40% dextrose (0.5L) infusion solutions. ResultsInfusions with 8.4% sodium bicarbonate solutions in an amount of 250-750mmol had an immediate and sustained plasma potassium-lowering effect. One hour after the end of such infusions or the start of a sodium bicarbonate containing constant drip infusion, changes of plasma K+ were most closely correlated to changes of venous blood pH, plasma sodium concentrations and plasma volume (r=-0.73,-0.57,-0.53;P<.001). Changes of plasma K+ during the subsequent 23hours were associated with changes of venous blood pH, clinical hydration status (enophthalmos) and serum creatinine concentrations (r=-0.71, 0.63, 0.62;P<.001). Conclusions and Clinical ImportanceThis study emphasizes the importance of alkalinization and the correction of dehydration in the treatment of hyperkalemia in neonatal calves with diarrhea

    Effects of Alkalinization and Rehydration on Plasma Potassium Concentrations in Neonatal Calves with Diarrhea

    Get PDF
    BackgroundIncreased plasma potassium concentrations (K+) in neonatal calves with diarrhea are associated with acidemia and severe clinical dehydration and are therefore usually corrected by intravenous administration of fluids containing sodium bicarbonate. ObjectivesTo identify clinical and laboratory variables that are associated with changes of plasma K+ during the course of treatment and to document the plasma potassium-lowering effect of hypertonic (8.4%) sodium bicarbonate solutions. AnimalsSeventy-one neonatal diarrheic calves. MethodsProspective cohort study. Calves were treated according to a clinical protocol using an oral electrolyte solution and commercially available packages of 8.4% sodium bicarbonate (250-750mmol),0.9% saline (5-10L),and 40% dextrose (0.5L) infusion solutions. ResultsInfusions with 8.4% sodium bicarbonate solutions in an amount of 250-750mmol had an immediate and sustained plasma potassium-lowering effect. One hour after the end of such infusions or the start of a sodium bicarbonate containing constant drip infusion, changes of plasma K+ were most closely correlated to changes of venous blood pH, plasma sodium concentrations and plasma volume (r=-0.73,-0.57,-0.53;P<.001). Changes of plasma K+ during the subsequent 23hours were associated with changes of venous blood pH, clinical hydration status (enophthalmos) and serum creatinine concentrations (r=-0.71, 0.63, 0.62;P<.001). Conclusions and Clinical ImportanceThis study emphasizes the importance of alkalinization and the correction of dehydration in the treatment of hyperkalemia in neonatal calves with diarrhea

    Exposure to Leptospira spp. and associated risk factors in the human, cattle and dog populations in Bhutan

    Get PDF
    Leptospirosis is a neglected worldwide zoonotic bacterial disease with a high prevalence in subtropical and tropical countries. The prevalence of Leptospira spp. in humans, cattle and dogs is unknown in Bhutan. Therefore, we sought to find out whether humans, cattle or dogs had been infected in the past with leptospires by measuring antibodies in the serum. We therefore collected blood from 864 humans >/=13 years of age, 130 bovines and 84 dogs from different rural and urban areas in Bhutan and tested the serum for antibodies specific for leptospires with a screening of enzyme-linked immunosorbent assays (ELISA) and a confirmatory microscopic agglutination test (MAT). In humans, 17.6% were seropositive by ELISA and 1.6% by MAT. The seropositivity was stronger in bovines (36.9%) and dogs (47.6%). "Having had a fever recently" (OR 5.2, p = 0.004), "working for the military" (OR 26.6, p = 0.028) and "being unemployed" (OR 12.9, p = 0.041) (reference category = housemaker) were statistically significantly associated with seropositivity when controlled for the effects of other risk factors. However, due to the small number of positive test results, the findings on risk factors should be interpreted with caution. Based on the serogroups found in the three species, dogs could be a source of infection for humans, or dogs and humans are exposed to the same environmental risk factors Clinical leptospirosis in humans and domestic animals should be investigated by testing blood and urine for the presence of leptospires by molecular methods (qPCR)
    corecore