29 research outputs found

    Comprehensive Analysis of MGMT Promoter Methylation: Correlation with MGMT Expression and Clinical Response in GBM

    Get PDF
    O6-methylguanine DNA-methyltransferase (MGMT) promoter methylation has been identified as a potential prognostic marker for glioblastoma patients. The relationship between the exact site of promoter methylation and its effect on gene silencing, and the patient's subsequent response to therapy, is still being defined. The aim of this study was to comprehensively characterize cytosine-guanine (CpG) dinucleotide methylation across the entire MGMT promoter and to correlate individual CpG site methylation patterns to mRNA expression, protein expression, and progression-free survival. To best identify the specific MGMT promoter region most predictive of gene silencing and response to therapy, we determined the methylation status of all 97 CpG sites in the MGMT promoter in tumor samples from 70 GBM patients using quantitative bisulfite sequencing. We next identified the CpG site specific and regional methylation patterns most predictive of gene silencing and improved progression-free survival. Using this data, we propose a new classification scheme utilizing methylation data from across the entire promoter and show that an analysis based on this approach, which we call 3R classification, is predictive of progression-free survival (HR  = 5.23, 95% CI [2.089–13.097], p<0.0001). To adapt this approach to the clinical setting, we used a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) test based on the 3R classification and show that this test is both feasible in the clinical setting and predictive of progression free survival (HR  = 3.076, 95% CI [1.301–7.27], p = 0.007). We discuss the potential advantages of a test based on this promoter-wide analysis and compare it to the commonly used methylation-specific PCR test. Further prospective validation of these two methods in a large independent patient cohort will be needed to confirm the added value of promoter wide analysis of MGMT methylation in the clinical setting

    Identification of DNA-binding proteins that recognize a Conserved Type I repeat sequence in the replication origin region of Tetrahymena rDNA

    No full text
    An origin of DNA replication has been mapped within the 5' non-transcribed spacer region of the amplified macronuclear rRNA genes (rDNA) of Tetrahymena thermophila. Mutations in 33 nt conserved AT-rich Type I repeat sequences located in the origin region cause defects in the replication and/or maintenance of amplified rDNA in vivo. Fe(ll)EDTA cleavage footprinting of restriction fragments containing the Type I repeat showed that most of the conserved nucleotides were protected by proteins in extracts of Tetrahymena cells. Two classes of proteins that bound the Type I repeat were identified and characterized using synthetic oligonucleotides in electrophoretic mobility shift assays. One of these, ds-TIBF, bound preferentially to duplex DNA and exhibited only moderate specificity for Type I repeat sequences. In contrast, a single-stranded DNA-binding protein, ssATIBF, specifically recognized the A-rich strand of the Type I repeat sequence. Deletion of the 5′ or 3′ borders of the conserved sequence significantly reduced binding of ssA-TIBF. The binding properties of ssATIBF, coupled with genetic evidence that Type I sequences function as c/s-acting rDNA replication control elements in vivo, suggest a possible role for ssA-TIBF in rDNA replication in Tetrahymena.This article is from Nucleic Acids Research 22 (1994): 4432, doi: 10.1093/nar/22.21.4432. Posted with permission.</p

    Identification of DNA-binding proteins that recognize a conserved type I repeat sequence in the replication origin region of Tetrahymena rDNA.

    Get PDF
    An origin of DNA replication has been mapped within the 5' non-transcribed spacer region of the amplified macronuclear rRNA genes (rDNA) of Tetrahymena thermophila. Mutations in 33 nt conserved AT-rich Type I repeat sequences located in the origin region cause defects in the replication and/or maintenance of amplified rDNA in vivo. Fe(II)EDTA cleavage footprinting of restriction fragments containing the Type I repeat showed that most of the conserved nucleotides were protected by proteins in extracts of Tetrahymena cells. Two classes of proteins that bound the Type I repeat were identified and characterized using synthetic oligonucleotides in electrophoretic mobility shift assays. One of these, ds-TIBF, bound preferentially to duplex DNA and exhibited only moderate specificity for Type I repeat sequences. In contrast, a single-stranded DNA-binding protein, ssA-TIBF, specifically recognized the A-rich strand of the Type I repeat sequence. Deletion of the 5' or 3' borders of the conserved sequence significantly reduced binding of ssA-TIBF. The binding properties of ssA-TIBF, coupled with genetic evidence that Type I sequences function as cis-acting rDNA replication control elements in vivo, suggest a possible role for ssA-TIBF in rDNA replication in Tetrahymena

    Sample type bias in the analysis of cancer genomes

    Get PDF
    Abstract There is widespread agreement that cancer gene discovery requires high-quality tumor samples

    NOTCH3 Is a Prognostic Factor That Promotes Glioma Cell Proliferation, Migration and Invasion via Activation of CCND1 and EGFR

    No full text
    <div><p>Using a GWA analysis of a comprehensive glioma specimen population, we identified whole gain of chromosome 19 as one of the major chromosomal aberrations that correlates to patients’ outcomes. Our analysis of significant loci revealed for the first time NOTCH3 as one of the most significant amplification. NOTCH3 amplification is associated with worse outcome compared to tumors with non-amplified locus. NOTCH receptors (NOTCH1-4) are key positive regulators of cell-cell interactions, angiogenesis, cell adhesion and stem cell niche development which have been shown to play critical roles in several human cancers. Our objective is to determine the molecular roles of NOTCH3 in glioma pathogenesis and aggressiveness. Here we show for the first time that NOTCH3 plays a major role in glioma cell proliferation, cell migration, invasion and apoptosis. Therefore, our study uncovers the prognostic value and the oncogenic function of NOTCH3 in gliomagenesis and supports NOTCH3 as a promising target of therapy in high grade glioma. Our studies allowed the identification of a subset of population that may benefit from GSI- or anti-NOTCH3- based therapies. This may lead to the design of novel strategies to improve therapeutic outcome of patients with glioma by establishing medical and scientific basis for personalized chemotherapies.</p></div

    Tumor Derived Mutations of Protein Tyrosine Phosphatase Receptor Type K Affect Its Function and Alter Sensitivity to Chemotherapeutics in Glioma

    Get PDF
    <div><p>Poor prognosis and resistance to therapy in malignant gliomas is mainly due to the highly dispersive nature of glioma cells. This dispersive characteristic results from genetic alterations in key regulators of cell migration and diffusion. A better understanding of these regulatory signals holds promise to improve overall survival and response to therapy. Using mapping arrays to screen for genomic alterations in gliomas, we recently identified alterations of the protein tyrosine phosphatase receptor type kappa gene (PTPRK) that correlate to patient outcomes. These PTPRK alterations are very relevant to glioma biology as PTPRK can directly sense cell–cell contact and is a dephosphorylation regulator of tyrosine phosphorylation signaling, which is a major driving force behind tumor development and progression. Subsequent sequencing of the full length PTPRK transcripts revealed novel PTPRK gene deletion and missense mutations in numerous glioma biopsies. PTPRK mutations were cloned and expressed in PTPRK-null malignant glioma cells. The effect of these mutations on PTPRK anti-oncogenic function and their association with response to anti-glioma therapeutics, such as temozolomide and tyrosine kinase inhibitors, was subsequently analyzed using <i>in vitro</i> cell-based assays. These genetic variations altered PTPRK activity and its post-translational processing. Reconstitution of wild-type PTPRK in malignant glioma cell lines suppressed cell growth and migration by inhibiting EGFR and β-catenin signaling and improved the effect of conventional therapies for glioma. However, PTPRK mutations abrogated tumor suppressive effects of wild-type PTPRK and altered sensitivity of glioma cells to chemotherapy.</p></div
    corecore