45 research outputs found

    Electronically preresonant stimulated Raman scattering microscopy in the visible

    Get PDF
    We report an experimental scheme for stimulated Raman scattering (SRS) microscopy with excitation in the visible spectral region. This allows electronically preresonant (epr) SRS microscopy of a broad range of chromophores with sensitivities as low as 1 μM. Our experiment is based on two synchronously near-infrared pumped optical parametric oscillators (OPO). One of the outputs is modulated at a fourth of the repetition rate with a novel broadband electro-optical modulator. Using a combination of spectral focusing and tuning of the OPO, we show the recording of epr-SRS spectra over the whole range of molecular vibrations at a speed up to 20 times faster than classical wavelength tuning. The imaging capabilities of this setup are demonstrated with material scientific and cellular samples

    ‘Bois noir’: new phytoplasma disease of grapevine in Iran

    No full text
    Recently, grapevines showing symptoms suggesting the ‘bois noir’ phytoplasma disease were observed in vineyards located in several central provinces of Iran. Polymerase chain reaction assays using phytoplasma universal primer pair P1A/P7A followed by primer pair R16F2n/R16R2 in nested PCR, confirmed the association of phytoplasmas with symptomatic grapevines. The results of RFLP analyses using HpaII, HinfI, MseI, RsaI, and TaqI restriction enzymes, indicated that grapevine phytoplasma isolates in these regions could be related to the 16SrXII group. Sequence analyses of the partial 16S rRNA gene confirmed that Iranian grapevine phytoplasmas are associated with ‘Candidatus Phytoplasma solani’. This is the first report of the ‘bois noir’ disease outbreak in Iran

    Characterization of phytoplasmas related to aster yellows group infecting annual plants in Iran, based on the studies of 16S rRNA and rp genes

    No full text
    Several annual field crops, vegetables, ornamentals, oilseed crops, and weeds showing phytoplasma diseases symptoms were collected to detect phytoplasmas related to ‘Candidatus Phytoplasma asteris’. The collecting was done in the central regions of Iran. For general detection of phytoplasmas, 16S rRNA gene fragments were amplified using phytoplasma universal primer pair P1/P7 in polymerase chain reaction (PCR) followed by primer pair R16F2n/R16R2 in nested PCR. Then, for finer detection of phytoplasmas related to ‘Ca. P. asteris’, DNA samples were used to extend the rp and tuf gene fragments by PCR using aster yellows group specific primer pairs rp(I)F1A/rp(I)R1A and fTufAy/rTufAy, respectively. Restriction fragment lenght polymorphism (RFLP) analysis of rp gene fragments using digestion with AluI, MseI, and Tsp509I restriction enzymes indicated that aster yellows group related phytoplasmas in these Iranian regions, belong to rpI-B subgroups. Sequence analysis of partial 16S rRNA and rp genes from representative phytoplasma isolates confirmed the RFLP results. This research is the first report of annual plants infected with phytoplasmas related to subgroup rpI-B in Iran

    Characterization of phytoplasmas related to ‘Candidatus Phytoplasma asteris’ subgroup rpI-L in Iran

    No full text
    In two of Iran's central provinces, several herbaceous plants showing phytoplasma disease symptoms were collected to detect 'Canididatus Phytoplasma asteris'-related phytoplasmas. Confirmation of an association of phytoplasmas with diseased plants was done using polymerase chain reaction (PCR) assays having the phytoplasma universal primer pairs P1/P7 followed by R16F2n/ R16R2 in nested PCR. Then, for detection of 'Ca. P. asteris', DNA samples were subjected to amplification of rp and tuf genes using specific primer pairs rp(I)F1A/rp(I)R1A and fTufAy/rTufAy, respectively. Restriction fragment length polymorphism or RFLP analyses of rp gene fragments using Tsp509I restriction enzyme as well as sequence analyses indicated that 'Ca. P. asteris'-related phytoplasmas associated with carrot, niger seed and scallion plants in these regions, belong to the rpI-L subgroup. This research is the first report of carrot, niger seed, and scallion infection with phytoplasmas belonging to the rpI-L subgroup

    Detection of Russian olive witches’-broom disease and its insect vector in Northwestern Iran

    No full text
    Recently, Russian olive trees showing witches’-broom and little leaf symptoms have been widely observed in northwestern and central Iran. Polymerase chain reaction (PCR) and nested PCR assays using phytoplasma universal primer pairs confirmed phytoplasma symptomatic infection of trees. Sequence analyses showed that ‘Candidatus Phytoplasma asteris’ was the causal agent of the disease in these regions. However, RFLP results using restriction enzymes HpaII, EcoRI, HinfI and AluI indicated that the collected isolates in these regions are genetically different. In addition, leafhopper Macropsis infuscata was recognized as a possible insect vector of the disease for the first time

    Posttraumatic growth in Iranian cancer patients

    Full text link
    Objectives: To investigate the level and determinants of posttraumatic growth in Iranian cancer patients. Materials and Methods: This descriptive-correlational design study was conducted within a university-affiliated oncology hospital in Iran. A convenience sample of 450 patients with a definitive diagnosis of cancer of any type completed a demographic questionnaire and a posttraumatic growth inventory. Some disease-related information was obtained from patients′ medical records. Results: The mean of posttraumatic growth reported by participants was 76.1. There was a statistically significant association between experience of posttraumatic growth and age (r = 0.21, P=0.001), education at university level (F = 8.9, P=0.001) and history of treatment by radiotherapy (t = 2.1, P=0.03). Conclusion: The findings of this study suggest that Iranian cancer patients experience a moderate to high level of posttraumatic growth and confirm the hypothesis that the level of posttraumatic growth in non-Western cancer patients is more than that of Western cancer patients. Although, assessing the reasons for this difference needs more investigations
    corecore