45 research outputs found

    New universal gates for topological quantum computation with Fibonacci-ε\boldsymbol{\varepsilon} composite Majorana edge modes on topological superconductor multilayers

    Full text link
    We propose a new design of universal topological quantum computer device through a hybrid of the 1-, 2- and 7-layers of chiral topological superconductor (χ\chiTSC) thin films. Based on the SO(7)1/(G2)1SO(7)_1/(G_2)_1 coset construction, strongly correlated Majorana fermion edge modes on the 7-layers of χ\chiTSC are factorized into the composite of the Fibonacci τ\tau-anyon and ε\varepsilon-anyon modes in the tricritical Ising model. Furthermore, the deconfinement of τ\tau and ε\varepsilon via the interacting potential gives the braiding of either τ\tau or ε\varepsilon. Topological phase gates are assembled by the braidings. With these topological phase gates, we find a set of fully topological universal gates for the (τ,ε)(\tau,\varepsilon) composite Majorana-Ising-type quantum computation. Because the Hilbert space still possesses a tensor product structure of quibts and is characterized by the fermion parities, encoding quantum information in this machine is more efficient and substantial than that with Fibonacci anyons. The computation results is easier to be read out by electric signals, so are the initial data inputted.Comment: 6 pages, 3 figues, revised versio

    Forcing the Whole Video as Background: An Adversarial Learning Strategy for Weakly Temporal Action Localization

    Full text link
    With video-level labels, weakly supervised temporal action localization (WTAL) applies a localization-by-classification paradigm to detect and classify the action in untrimmed videos. Due to the characteristic of classification, class-specific background snippets are inevitably mis-activated to improve the discriminability of the classifier in WTAL. To alleviate the disturbance of background, existing methods try to enlarge the discrepancy between action and background through modeling background snippets with pseudo-snippet-level annotations, which largely rely on artificial hypotheticals. Distinct from the previous works, we present an adversarial learning strategy to break the limitation of mining pseudo background snippets. Concretely, the background classification loss forces the whole video to be regarded as the background by a background gradient reinforcement strategy, confusing the recognition model. Reversely, the foreground(action) loss guides the model to focus on action snippets under such conditions. As a result, competition between the two classification losses drives the model to boost its ability for action modeling. Simultaneously, a novel temporal enhancement network is designed to facilitate the model to construct temporal relation of affinity snippets based on the proposed strategy, for further improving the performance of action localization. Finally, extensive experiments conducted on THUMOS14 and ActivityNet1.2 demonstrate the effectiveness of the proposed method.Comment: 9 pages, 5 figures, conferenc

    Electric Vehicle Routing Problems with Stochastic Demands and Dynamic Remedial Measures

    No full text
    With the rapid development of e-commerce, logistic enterprises must better predict customer demand to improve distribution efficiency, so as to deliver goods in advance, which makes logistics stochastic and dynamic. In order to deal with this challenge and respond to the concept of “green logistics,” an electric vehicle routing problem with stochastic demands (EVRPSD) and proactive remedial measures is investigated, and an EVRPSD model with probability constraints is established. At the same time, a hybrid heuristic algorithm, combining a saving method and an improved Tabu search algorithm, is proposed to solve the model. Moreover, two insertion strategies with the greedy algorithm for charging stations and dynamic nodes are introduced. Finally, a large number of experimental data show that the heuristic algorithm proposed in this paper is feasible and effective

    Experimental study on the mobility of Junggar Basin's Jimsar shale oil by CO2 huff and puff under different temperatures and pressures

    No full text
    Micro- and nano-scale pore-throat fissure systems were mainly developed in the Jimsar shale oil reservoir of the Junggar Basin with the oil of viscous and difficult to be produced.CO2 huff-and-puff is an important technology to enhance the oil recovery. To understand the mobility law of Jimsar shale oil reservoir under CO2 huff and puff, 45 cores of the Lucaogou Formation in this area were studied in this study.The cores was classified into dolomitic sandstone, doloarenite and lithic sandstone. The overburden porosity of the reservoir is 2.0%-22.7%, and the average value is only 11.0%. The average overburden permeability is 0.01×10-3 μm2, and more than 90% of the samples have permeability lower than 0.1×10-3 μm2. According to physical property classification, 20 rock samples were further selected and 6 key parameters for low-field NMR measurement were optimized. By comparing the experimental data of shale oil mercury injection with those of low-field NMR, the linear relationship between T2 value and pore radius of shale core was established in logarithmic coordinates.The pore radius distribution of shale was obtained quantitatively according to the T2 spectrum. 9 kinds of CO2 huff and puff experiments were carried out under different temperatures and pressures. The analyses of recovery rate, utilization degree and other indicators show that shale oil in small pores(r 1 000 nm) is relatively higher, and increases with the increase of temperature and pressure

    Diagnosis Method for Li-Ion Battery Fault Based on an Adaptive Unscented Kalman Filter

    No full text
    The reliability of battery fault diagnosis depends on an accurate estimation of the state of charge and battery characterizing parameters. This paper presents a fault diagnosis method based on an adaptive unscented Kalman filter to diagnose the parameter bias faults for a Li-ion battery in real time. The first-order equivalent circuit model and relationship between the open circuit voltage and state of charge are established to describe the characteristics of the Li-ion battery. The parameters in the equivalent circuit model are treated as system state variables to set up a joint state and parameter space equation. The algorithm for fault diagnosis is designed according to the estimated parameters. Two types of fault of the Li-ion battery, including internal ohmic resistance fault and diffusion resistance faults, are studied as a case to validate the effectiveness of the algorithm. The experimental results show that the proposed approach in this paper has effective tracking ability, better estimation accuracy, and reliable diagnosis for Li-ion batteries

    Study on the influence of grinding disc motion on the forming of silicon nitride ceramic balls

    No full text
    In order to improve the processing accuracy of silicon nitride ceramic balls and to investigate the mechanism of forming ceramic balls by flexible support grinding method, a new cone-type flexible support grinding method with controlled deflection motion of grinding disc is proposed. Based on the new grinding method, a simulation model is established to deeply analyze the influence of the deflection motion of the grinding disc on the grinding trajectory and force state of the silicon nitride ceramic balls. Orthogonal experiments were conducted on a new cone-type flexible support grinding platform built to further analyze the effect of grinding disc motion characteristics on ball formation. Simulation and experimental results show that under the flexible support grinding method, As the increases of grinding disc deflection angle, the standard deviation of ball trajectory uniformity decreased from 43.58 to 35.49, the maximum contact force increased to 4 times the initial value, the average ball diameter variation increased from 1.466 μm to 2.382 μm, and the batch diameter variation increased from 4.98 μm to 10.27 μm. The lower grinding disc deflection motion is beneficial to optimize the grinding trajectory, but increases the unevenness of the ball force, which is not conducive to improving the average ball diameter variation and batch diameter variation of silicon nitride ceramic balls. In the actual process, the angle of deflection of the grinding disc must be controlled to within 0.02°

    Deep selective feature learning for action recognition

    No full text
    corecore