158 research outputs found

    Single-ion and exchange anisotropy effects and multiferroic behavior in high-symmetry tetramer single molecule magnets

    Full text link
    We study single-ion and exchange anisotropy effects in equal-spin s1s_1 tetramer single molecule magnets exhibiting TdT_d, D4hD_{4h}, D2dD_{2d}, C4hC_{4h}, C4vC_{4v}, or S4S_4 ionic point group symmetry. We first write the group-invariant quadratic single-ion and symmetric anisotropic exchange Hamiltonians in the appropriate local coordinates. We then rewrite these local Hamiltonians in the molecular or laboratory representation, along with the Dzyaloshinskii-Moriay (DM) and isotropic Heisenberg, biquadratic, and three-center quartic Hamiltonians. Using our exact, compact forms for the single-ion spin matrix elements, we evaluate the eigenstate energies analytically to first order in the microscopic anisotropy interactions, corresponding to the strong exchange limit, and provide tables of simple formulas for the energies of the lowest four eigenstate manifolds of ferromagnetic (FM) and anitiferromagnetic (AFM) tetramers with arbitrary s1s_1. For AFM tetramers, we illustrate the first-order level-crossing inductions for s1=1/2,1,3/2s_1=1/2,1,3/2, and obtain a preliminary estimate of the microscopic parameters in a Ni4_4 from a fit to magnetization data. Accurate analytic expressions for the thermodynamics, electron paramagnetic resonance absorption and inelastic neutron scattering cross-section are given, allowing for a determination of three of the microscopic anisotropy interactions from the second excited state manifold of FM tetramers. We also predict that tetramers with symmetries S4S_4 and D2dD_{2d} should exhibit both DM interactions and multiferroic states, and illustrate our predictions for s1=1/2,1s_1=1/2, 1.Comment: 30 pages, 14 figures, submitted to Phys. Rev.

    Absolute rigidity spectrum of protons and helium nuclei above 10 GV/c

    Get PDF
    Proton and helium nuclei differential spectra were gathered with a balloon borne magnet spectrometer. The data were fitted to the assumption that the differential flux can be represented by a power law in rigidity. In the rigidity range 10 to 25 GV/c the spectral indices were found to be -(2.74 plus or minus 0.04) for protons and -(2.71 plus or minus 0.05) for helium nuclei. A brief discussion is given by systematic errors

    Observation of cosmic ray positrons from 5 to 25 GeV

    Get PDF
    The positron data gathered in conjunction with electron data published elsewhere is reported. The basic recognition scheme was to look for low mass positive particles that cause a cascade in a 7 radiation length shower counter. The mass criteria is imposed by selecting particles that were accompanied by Cherenkov light but whose rigidity was below the proton Cherenkov threshold. Thus the proton Cherenkov threshold represents an upper limit to the range of the experiment

    Characterization of the S = 9 excited state in Fe8Br8 by Electron Paramagnetic Resonance

    Full text link
    High Frequency electron paramagnetic resonance has been used to observe the magnetic dipole, Δ\Delta Ms_s = ±\pm 1, transitions in the S=9S = 9 excited state of the single molecule magnet Fe8_8Br8_8. A Boltzmann analysis of the measured intensities locates it at 24 ±\pm 2 K above the S=10S = 10 ground state, while the line positions yield its magnetic parameters D = -0.27 K, E = ±\pm0.05 K, and B40_4^0 = -1.3×\times 106^{-6} K. D is thus smaller by 8% and E larger by 7% than for S=10S = 10. The anisotropy barrier for S=9S = 9 is estimated as 22 K,which is 25% smaller than that for S=10S = 10 (29 K). These data also help assign the spin exchange constants(J's) and thus provide a basis for improved electronic structure calculations of Fe8_8Br8_8.Comment: 7 pages, Figs included in text, submitted to PR

    Semiconductive and Photoconductive Properties of the Single Molecule Magnets Mn12_{12}-Acetate and Fe8_8Br8_8

    Full text link
    Resistivity measurements are reported for single crystals of Mn12_{12}-Acetate and Fe8_8Br8_8. Both materials exhibit a semiconductor-like, thermally activated behavior over the 200-300 K range. The activation energy, EaE_a, obtained for Mn12_{12}-Acetate was 0.37 ±\pm 0.05 eV, which is to be contrasted with the value of 0.55 eV deduced from the earlier reported absorption edge measurements and the range of 0.3-1 eV from intramolecular density of states calculations, assuming 2Ea2E_a= EgE_g, the optical band gap. For Fe8_8Br8_8, EaE_a was measured as 0.73 ±\pm 0.1 eV, and is discussed in light of the available approximate band structure calculations. Some plausible pathways are indicated based on the crystal structures of both lattices. For Mn12_{12}-Acetate, we also measured photoconductivity in the visible range; the conductivity increased by a factor of about eight on increasing the photon energy from 632.8 nm (red) to 488 nm (blue). X-ray irradiation increased the resistivity, but EaE_a was insensitive to exposure.Comment: 7 pages, 8 figure

    Novel Cβ–Cγ Bond Cleavages of Tryptophan-Containing Peptide Radical Cations

    Get PDF
    In this study, we observed unprecedented cleavages of the Cβ–Cγ bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M•+) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M – 116]+ ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent Cβ–Cγ bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH – 43]+ and [WGGGH – 116]+, obtained from the CID of [LGGGH]•+ and [WGGGH]•+, respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind]•-2), in agreement with the CID data for [WGGGH]•+ and [W1-CH3GGGH]•+; replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from Cβ–Cγ bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the Cβ–Cγ bond and, therefore, decreases the dissociation energy barrier dramatically
    corecore