94 research outputs found

    Self propulsion of droplets driven by an active permeating gel

    Full text link
    We discuss the flow field and propulsion velocity of active droplets, which are driven by body forces residing on a rigid gel. The latter is modelled as a porous medium which gives rise to permeation forces. In the simplest model, the Brinkman equation, the porous medium is characterised by a single length scale ℓ\ell --the square root of the permeability. We compute the flow fields inside and outside of the droplet as well as the energy dissipation as a function of ℓ\ell. We furthermore show that there are optimal gel fractions, giving rise to maximal linear and rotational velocities. In the limit ℓ→∞\ell\to\infty, corresponding to a very dilute gel, we recover Stokes flow. The opposite limit, ℓ→0\ell\to 0, corresponding to a space filling gel, is singular and not equivalent to Darcy's equation, which cannot account for self-propulsion

    Towards finite-dimensional gelation

    Full text link
    We consider the gelation of particles which are permanently connected by random crosslinks, drawn from an ensemble of finite-dimensional continuum percolation. To average over the randomness, we apply the replica trick, and interpret the replicated and crosslink-averaged model as an effective molecular fluid. A Mayer-cluster expansion for moments of the local static density fluctuations is set up. The simplest non-trivial contribution to this series leads back to mean-field theory. The central quantity of mean-field theory is the distribution of localization lengths, which we compute for all connectivities. The highly crosslinked gel is characterized by a one-to-one correspondence of connectivity and localization length. Taking into account higher contributions in the Mayer-cluster expansion, systematic corrections to mean-field can be included. The sol-gel transition shifts to a higher number of crosslinks per particle, as more compact structures are favored. The critical behavior of the model remains unchanged as long as finite truncations of the cluster expansion are considered. To complete the picture, we also discuss various geometrical properties of the crosslink network, e.g. connectivity correlations, and relate the studied crosslink ensemble to a wider class of ensembles, including the Deam-Edwards distribution.Comment: 18 pages, 4 figures, version to be published in EPJ

    Friction-induced Shear thickening: a microscopic perspective

    Full text link
    We develop a microscopic picture of shear thickening in dense suspensions which emphasizes the role of frictional forces, coupling rotational and translational degrees of freedom. Simulations with contact forces and viscous drag only, reveal pronounced shear thickening with a simultaneous increase in contact number and energy dissipation by frictional forces. At high densities, when the translational motion is severely constrained, we observe liquid-like gear-states with pronounced relative rotations of the particles coexisting with solid-like regions which rotate as a whole. The latter are stabilised by frustrated loops which become more numerous and persistent with increasing pressure, giving rise to an increasing lengthscale of this mosaique-like structure and a corresponding increase in viscosity.Comment: 7 pages, 12 figures, accepted in EP

    Anisotropic Random Networks of Semiflexible Polymers

    Full text link
    Motivated by the organization of crosslinked cytoskeletal biopolymers, we present a semimicroscopic replica field theory for the formation of anisotropic random networks of semiflexible polymers. The networks are formed by introducing random permanent crosslinks which fix the orientations of the corresponding polymer segments to align with one another. Upon increasing the crosslink density, we obtain a continuous gelation transition from a fluid phase to a gel where a finite fraction of the system gets localized at random positions. For sufficiently stiff polymers, this positional localization is accompanied by a {\em continuous} isotropic-to-nematic (IN) transition occuring at the same crosslink density. As the polymer stiffness decreases, the IN transition becomes first order, shifts to a higher crosslink density, and is preceeded by an orientational glass (statistically isotropic amorphous solid) where the average polymer orientations freeze in random directions.Comment: 5 pages, 2 figures; final version with expanded discussion to appear in PR
    • …
    corecore