9 research outputs found

    Alteromonas Myovirus V22 Represents a New Genus of Marine Bacteriophages Requiring a Tail Fiber Chaperone for Host Recognition

    Get PDF
    Marine phages play a variety of critical roles in regulating the microbial composition of our oceans. Despite constituting the majority of genetic diversity within these environments, there are relatively few isolates with complete genome sequences or in-depth analyses of their host interaction mechanisms, such as characterization of their receptor binding proteins (RBPs). Here, we present the 92,760-bp genome of the Alteromonas-targeting phage V22. Genomic and morphological analyses identify V22 as a myovirus; however, due to a lack of sequence similarity to any other known myoviruses, we propose that V22 be classified as the type phage of a new Myoalterovirus genus within the Myoviridae family. V22 shows gene homology and synteny with two different subfamilies of phages infecting enterobacteria, specifically within the structural region of its genome. To improve our understanding of the V22 adsorption process, we identified putative RBPs (gp23, gp24, and gp26) and tested their ability to decorate the V22 propagation strain, Alteromonas mediterranea PT11, as recombinant green fluorescent protein (GFP)-tagged constructs. Only GFP-gp26 was capable of bacterial recognition and identified as the V22 RBP. Interestingly, production of functional GFP-gp26 required coexpression with the downstream protein gp27. GFP-gp26 could be expressed alone but was incapable of host recognition. By combining size-exclusion chromatography with fluorescence microscopy, we reveal how gp27 is not a component of the final RBP complex but instead is identified as a new type of phage-encoded intermolecular chaperone that is essential for maturation of the gp26 RBP.This work was supported by grants ‘VIREVO’ CGL2016‐76273‐P (MCI/AEI/FEDER, EU) (cofounded with FEDER funds) from the Spanish Ministerio de Ciencia e Innovación and ‘HIDRAS3’ PROMETEU/2019/009 from Generalitat Valenciana. R.G.-S. was supported by a predoctoral fellowship from the Valencian Consellería de Educació, Investigació, Cultura i Esport (ACIF/2016/050) and was also a beneficiary of the BEFPI 2019 fellowship for predoctoral stays from Generalitat Valenciana and The European Social Fund. F.R.-V. was a beneficiary of the 5top100 program of the Ministry for Science and Education of Russia

    Systemic application of bone-targeting peptidoglycan hydrolases as a novel treatment approach for staphylococcal bone infection

    Full text link
    The rising prevalence of antimicrobial resistance in S. aureus has rendered treatment of staphylococcal infections increasingly difficult, making the discovery of alternative treatment options a high priority. Peptidoglycan hydrolases, a diverse group of bacteriolytic enzymes, show high promise as such alternatives due to their rapid and specific lysis of bacterial cells, independent of antibiotic resistance profiles. However, using these enzymes for the systemic treatment of local infections, such as osteomyelitis foci, needs improvement, as the therapeutic distributes throughout the whole host, resulting in low concentrations at the actual infection site. In addition, the occurrence of intracellularly persisting bacteria can lead to relapsing infections. Here, we describe an approach using tissue-targeting to increase the local concentration of therapeutic enzymes in the infected bone. The enzymes were modified with a short targeting moiety that mediated accumulation of the therapeutic in osteoblasts and additionally enables targeting of intracellularly surviving bacteria

    Deimmunization of protein therapeutics – Recent advances in experimental and computational epitope prediction and deletion

    No full text
    Biotherapeutics, and antimicrobial proteins in particular, are of increasing interest for human medicine. An important challenge in the development of such therapeutics is their potential immunogenicity, which can induce production of anti-drug-antibodies, resulting in altered pharmacokinetics, reduced efficacy, and potentially severe anaphylactic or hypersensitivity reactions. For this reason, the development and application of effective deimmunization methods for protein drugs is of utmost importance. Deimmunization may be achieved by unspecific shielding approaches, which include PEGylation, fusion to polypeptides (e.g., XTEN or PAS), reductive methylation, glycosylation, and polysialylation. Alternatively, the identification of epitopes for T cells or B cells and their subsequent deletion through site-directed mutagenesis represent promising deimmunization strategies and can be accomplished through either experimental or computational approaches. This review highlights the most recent advances and current challenges in the deimmunization of protein therapeutics, with a special focus on computational epitope prediction and deletion tools.ISSN:2001-037

    Promiscuous Installation of d-Amino Acids in Gene-Encoded Peptides

    No full text
    d-Amino acids can have major effects on the structure, proteolytic stability, and bioactivity of peptides. Proteusin radical S-adenosyl methionine epimerases regioselectively install such residues in ribosomal peptides to generate peptides with the largest number of d-residues currently known in biomolecules. To study their utility in synthetic biology, we investigated the substrate tolerance and substrate-product relationships of the cyanobacterial model epimerase OspD using libraries of point mutants as well as distinct extended peptides that were fused to an N-terminal leader sequence. OspD was found to exhibit exceptional substrate promiscuity in E. coli, accepting 15 different amino acids and converting peptides with a broad range of compositions, secondary structures, and polarities. Diverse single and multiple epimerization patterns were identified that were dictated by the peptide sequence. The data suggest major potential in creating genetically encoded products previously inaccessible by synthetic biology.ISSN:2161-506

    Engineering of long-circulating peptidoglycan hydrolases enables efficient treatment of systemic Staphylococcus aureus infection

    Get PDF
    Staphylococcus aureus is a human pathogen causing life-threatening diseases. The increasing prevalence of multidrug-resistant S. aureus infections is a global health concern, requiring development of novel therapeutic options. Peptidoglycan-degrading enzymes (peptidoglycan hydrolases, PGHs) have emerged as a highly effective class of antimicrobial proteins against S. aureus and other pathogens. When applied to Gram-positive bacteria, PGHs hydrolyze bonds within the peptidoglycan layer, leading to rapid bacterial death by lysis. This activity is highly specific and independent of the metabolic activity of the cell or its antibiotic resistance patterns. However, systemic application of PGHs is limited by their often low activity in vivo and by an insufficient serum circulation half-life. To address this problem, we aimed to extend the half-life of PGHs selected for high activity against S. aureus in human serum. Half-life extension and increased serum circulation were achieved through fusion of PGHs to an albumin-binding domain (ABD), resulting in high-affinity recruitment of human serum albumin and formation of large protein complexes. Importantly, the ABD-fused PGHs maintained high killing activity against multiple drug-resistant S. aureus strains, as determined by ex vivo testing in human blood. The top candidate, termed ABD_M23, was tested in vivo to treat S. aureus-induced murine bacteremia. Our findings demonstrate a significantly higher efficacy of ABD_M23 than of the parental M23 enzyme. We conclude that fusion with ABD represents a powerful approach for half-life extension of PGHs, expanding the therapeutic potential of these enzybiotics for treatment of multidrug-resistant bacterial infections.IMPORTANCE Life-threatening infections with Staphylococcus aureus are often difficult to treat due to the increasing prevalence of antibiotic-resistant bacteria and their ability to persist in protected niches in the body. Bacteriolytic enzymes are promising new antimicrobials because they rapidly kill bacteria, including drug-resistant and persisting cells, by destroying their cell wall. However, when injected into the bloodstream, these enzymes are not retained long enough to clear an infection. Here, we describe a modification to increase blood circulation time of the enzymes and enhance treatment efficacy against S. aureus-induced bloodstream infections. This was achieved by preselecting enzyme candidates for high activity in human blood and coupling them to serum albumin, thereby preventing their elimination by kidney filtration and blood vessel cells

    Engineering of Long-Circulating Peptidoglycan Hydrolases Enables Efficient Treatment of Systemic Staphylococcus aureus Infection

    No full text
    Staphylococcus aureus is a human pathogen causing life-threatening diseases. The increasing prevalence of multidrug-resistant S. aureus infections is a global health concern, requiring development of novel therapeutic options. Peptidoglycan-degrading enzymes (peptidoglycan hydrolases, PGHs) have emerged as a highly effective class of antimicrobial proteins against S. aureus and other pathogens. When applied to Gram-positive bacteria, PGHs hydrolyze bonds within the peptidoglycan layer, leading to rapid bacterial death by lysis. This activity is highly specific and independent of the metabolic activity of the cell or its antibiotic resistance patterns. However, systemic application of PGHs is limited by their often low activity in vivo and by an insufficient serum circulation half-life. To address this problem, we aimed to extend the half-life of PGHs selected for high activity against S. aureus in human serum. Half-life extension and increased serum circulation were achieved through fusion of PGHs to an albumin-binding domain (ABD), resulting in high-affinity recruitment of human serum albumin and formation of large protein complexes. Importantly, the ABD-fused PGHs maintained high killing activity against multiple drug-resistant S. aureus strains, as determined by ex vivo testing in human blood. The top candidate, termed ABD_M23, was tested in vivo to treat S. aureus-induced murine bacteremia. Our findings demonstrate a significantly higher efficacy of ABD_M23 than of the parental M23 enzyme. We conclude that fusion with ABD represents a powerful approach for half-life extension of PGHs, expanding the therapeutic potential of these enzybiotics for treatment of multidrug-resistant bacterial infections.ISSN:2150-7511ISSN:2161-212

    Systemic application of bone-targeting peptidoglycan hydrolases as a novel treatment approach for staphylococcal bone infection

    No full text
    The current standard of treatment for chronic staphylococcal osteomyelitis entails high doses of antibiotics over the course of several weeks. Biofilm-associated and intracellular persisters are key factors contributing to therapeutic failure. Additionally, systemic application results in low concentrations of antibiotics at local infection sites due to its general distribution throughout the host. In this study, we explored a targeted approach for the treatment of staphylococcal osteomyelitis, employing a combination of highly active peptidoglycan hydrolases (PGHs) and cell-penetrating homing peptides (CPHPs) with specificity for osteoblasts. In vitro phage display on murine osteoblasts followed by next-generation sequencing led to the identification of 10 putative cell-penetrating homing peptides, which subsequently showed cell-line specific internalization of covalently linked fluorescent molecules into murine osteoblasts. Upon intravenous application, the lead candidate peptide mediated tissue-specific accumulation of an associated PGH in murine bones, confirming its function as an osteotropic peptide with cell-penetrating abilities. Furthermore, we selected three enzymes with high staphylolytic activity in murine serum screened from a set of 28 PGHs highly active against Staphylococcus aureus in human serum and under intracellular conditions: lysostaphin (LST), M23LST(L)_SH3b2638, and CHAPGH15_SH3bAle1. Finally, we demonstrated increased efficacy of the three PGHs modified with two osteotropic CPHPs as compared to their unmodified parentals at reducing bacterial numbers in a murine model of S. aureus deep wound subcutaneous infection leading to dissemination to the bone. Collectively, our findings show that modification of PGHs with tissue-specific CPHPs presents a viable approach for the systemic treatment of localized infections associated with intracellular bacteria.ISSN:2150-7511ISSN:2161-212

    Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureus.ISSN:2150-7511ISSN:2161-212
    corecore