33 research outputs found

    Effective field theory of interactions on the lattice

    Full text link
    We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling constants. Our method constitutes a very simple avenue for the systematic renormalization in effective field theory, and is especially useful as the number of interaction parameters increases.Comment: 7 pages, 0 figure

    Emergence of junction dynamics in a strongly interacting Bose mixture

    Get PDF
    We study the dynamics of a one-dimensional system composed of a bosonic background and one impurity in single- and double-well trapping geometries. In the limit of strong interactions, this system can be modeled by a spin chain where the exchange coefficients are determined by the geometry of the trap. We observe non-trivial dynamics when the repulsion between the impurity and the background is dominant. In this regime, the system exhibits oscillations that resemble the dynamics of a Josephson junction. Furthermore, the double-well geometry allows for an enhancement in the tunneling as compared to the single-well case.Comment: 20 pages, 9 figure

    Dynamical realization of magnetic states in a strongly interacting Bose mixture

    Get PDF
    We describe the dynamical preparation of magnetic states in a strongly interacting two-component Bose gas in a harmonic trap. By mapping this system to an effective spin chain model, we obtain the dynamical spin densities and the fidelities for a few-body system. We show that the spatial profiles transit between ferromagnetic and antiferromagnetic states as the intraspecies interaction parameter is slowly increased.Comment: 6 pages, 7 figure

    Multicomponent Strongly Interacting Few-Fermion Systems in One Dimension

    Full text link
    The paper examines a trapped one-dimensional system of multicomponent spinless fermions that interact with a zero-range two-body potential. We show that when the repulsion between particles is very large the system can be approached analytically. To illustrate this analytical approach we consider a simple system of three distinguishable particles, which can be addressed experimentally. For this system we show that for infinite repulsion the energy spectrum is sixfold degenerate. We also show that this degeneracy is partially lifted for finitely large repulsion for which we find and describe corresponding wave functions.Comment: Paper in connection with the 22nd European Conference on Few-Body Problems in Physics, Krakow, Poland, 9-13 September 201

    A Solvable Model for Decoupling of Interacting Clusters

    Full text link
    We consider M clusters of interacting particles, whose in-group interactions are arbitrary, and inter-group interactions are approximated by oscillator potentials. We show that there are masses and frequencies that decouple the in-group and inter-group degrees of freedom, which reduces the initial problem to M independent problems that describe each of the relative in-group systems. The dynamics of the M center-of-mass coordinates is described by the analytically solvable problem of M coupled harmonic oscillators. This paper derives and discusses these decoupling conditions. Furthermore, to illustrate our findings, we consider a charged impurity interacting with a ring of ions. We argue that the impurity can be used to probe the center-of-mass dynamics of the ions.Comment: Version accepted for publication in EP
    corecore