7 research outputs found

    <em>De novo</em> nonsense and frameshift variants of <em>TCF20</em> in individuals with intellectual disability and postnatal overgrowth.

    No full text
    Recently, germline variants of the transcriptional co-regulator gene TCF20 have been implicated in the aetiology of autism spectrum disorders (ASD). However, the knowledge about the associated clinical picture remains fragmentary. In this study, two individuals with de novo TCF20 sequence variants were identified in a cohort of 313 individuals with intellectual disability of unknown aetiology, which was analysed by whole exome sequencing using a child-parent trio design. Both detected variants - one nonsense and one frameshift variant - were truncating. A comprehensive clinical characterisation of the patients yielded mild intellectual disability, postnatal tall stature and macrocephaly, obesity and muscular hypotonia as common clinical signs while ASD was only present in one proband. The present report begins to establish the clinical picture of individuals with de novo nonsense and frameshift variants of TCF20 which includes features such as proportionate overgrowth and muscular hypotonia. Furthermore, intellectual disability/developmental delay seems to be fully penetrant amongst known individuals with de novo nonsense and frameshift variants of TCF20, whereas ASD is shown to be incompletely penetrant. The transcriptional co-regulator gene TCF20 is hereby added to the growing number of genes implicated in the aetiology of both ASD and intellectual disability. Furthermore, such de novo variants of TCF20 may represent a novel differential diagnosis in the overgrowth syndrome spectrum

    Sequence diversity in the coat protein gene of Lettuce big-vein associated virus and Mirafiori lettuce big-vein virus infecting lettuce in Brazil Variabilidade genética na porção codificadora para a proteína capsidial do Lettuce big-vein associated virus e Mirafiori lettuce big-vein virus provenientes de alface no Brasil

    No full text
    Lettuce big vein associated virus (LBVaV) and Mirafiori lettuce big vein virus (MLBVV) have been found in mixed infection in Brazil causing the lettuce big vein disease. Analysis of part of the coat protein (CP) gene of Brazilian isolates of LBVaV collected from lettuce, showed at least 93% amino acid sequence identity with other LBVaV isolates. Genetic diversity among MLBVV CP sequences was higher when compared to LBVaV CP sequences, with amino acid sequence identity ranging between 91% to 100%. Brazilian isolates of MLBVV belong to subgroup A, with one RsaI restriction site on the coat protein gene. There is no indication for a possible geografical origin for the Brazilian isolates of LBVaV and MLBVV.<br>Lettuce big vein associated virus (LBVaV) e Mirafiori lettuce big vein virus (MLBVV) têm sido encontrados em infecções mistas no Brasil, causando a doença conhecida como engrossamento das nervuras da alface. Análise de parte do gene da proteína capsidial (CP) de isolados brasileiros de LBVaV coletados em alface, indicou que estes possuem identidade superior a 93% com isolados coletados em diferentes regiões geográficas. A diversidade genética entre a CP de isolados de MLBVV de alface foi maior comparada às sequências da CP de LBVaV, com a identidade de aminoácidos variando entre 91 a 100%. Os isolados brasileiros de MLBVV pertencem ao subgrupo A, com um único sítio de restrição RsaI no gene da proteína capsidial. Não há indicação para uma provável origem geográfica dos isolados brasileiros de MLBVV e LBVaV

    Advances in hatchery and grow-out technology of cobia Rachycentron canadum (Linnaeus)

    No full text
    This paper describes advances in hatchery and grow‐out technology of cobia (Rachycentron canadum, Linnaeus). In 2007, methods for capture, transport, acclimation, sampling, conditioned spawning, larval rearing, fingerling production, nursery, shipping and grow‐out have been perfected. Survival rates ranging from 17.5% to 35% were achieved from egg to shipping size fingerlings (1.0 g) in 2007 at the University of Miami Experimental Fish Hatchery, with production of approximately 20 000 fingerlings per 12 000 L tank. Wild and F1 broodstock cobia have been conditioned to spawn through temperature manipulation producing viable eggs for experimental and production level larval rearing trials in several hatcheries. Brood fish have also been induced to spawn using hormones. Cobia appear to be susceptible to infestations by parasitic protozoa such as Amyloodinium ocellatum and to infections caused by deleterious bacteria such as Photobacterium spp. and Vibrio spp. Prophylactic methods used to prevent and control epizootic diseases at the hatchery are summarized. Improved techniques for cage management were implemented, and both novel designs of submerged cages deployed in exposed areas and traditional gravity cages in protected areas have been used for commercial ongrowing of cobia in the Americas and the Caribbean region

    Role of Sex Hormones in Regulating Innate Immune Protection against HIV in the Human Female Reproductive Tract

    No full text
    corecore