163 research outputs found

    Hacking the Non-Technical Brain: Maximizing Retention in a Core Introductory IT Course

    Get PDF
    Maximizing student retention of, and ability to apply, technical material in introductory information technology courses is a complex task, especially with respect to the general student population. This population struggles with the application of programming concepts in the time-constrained testing environment. Our study considers the implementation of daily quizzes in a core-curriculum information technology and programming course as a means to improve student concept retention and application. Between the first and second exams, the instructors implemented a series of high-frequency, no-risk quizzes. Of the four sections of the course that each instructor taught, two sections each were provided with the quizzes as the experimental group and two remained with the standard curriculum as the control. The results demonstrate the benefits of frequent, effortful recall on student performance in a core-curriculum information technology and programming course

    Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach

    Get PDF
    The synthesis of CdS and CdSe nanocrystallites using the thermolysis of several dithioor diselenocarbamato complexes of cadmium in trioctylphosphine oxide (TOPO) is reported. The nanodispersed materials obtained show quantum size effects in their optical spectra and exhibit near band-edge luminescence. The influence of experimental parameters on the properties of the nanocrystallites is discussed. HRTEM images of these materials show well-defined, crystalline nanosized particles. Standard size fractionation procedures can be performed in order to narrow the size dispersion of the samples. The TOPO-capped CdS and CdSe nanocrystallites and simple organic bridging ligands, such as 2,2¢-bipyrimidine, are used as the starting materials for the preparation of novel nanocomposites. The optical properties shown by these new nanocomposites are compared with those of the starting nanodispersed materials

    Toward Predicting Success and Failure in CS2: A Mixed-Method Analysis

    Full text link
    Factors driving success and failure in CS1 are the subject of much study but less so for CS2. This paper investigates the transition from CS1 to CS2 in search of leading indicators of success in CS2. Both CS1 and CS2 at the University of North Carolina Wilmington (UNCW) are taught in Python with annual enrollments of 300 and 150 respectively. In this paper, we report on the following research questions: 1) Are CS1 grades indicators of CS2 grades? 2) Does a quantitative relationship exist between CS2 course grade and a modified version of the SCS1 concept inventory? 3) What are the most challenging aspects of CS2, and how well does CS1 prepare students for CS2 from the student's perspective? We provide a quantitative analysis of 2300 CS1 and CS2 course grades from 2013--2019. In Spring 2019, we administered a modified version of the SCS1 concept inventory to 44 students in the first week of CS2. Further, 69 students completed an exit questionnaire at the conclusion of CS2 to gain qualitative student feedback on their challenges in CS2 and on how well CS1 prepared them for CS2. We find that 56% of students' grades were lower in CS2 than CS1, 18% improved their grades, and 26% earned the same grade. Of the changes, 62% were within one grade point. We find a statistically significant correlation between the modified SCS1 score and CS2 grade points. Students identify linked lists and class/object concepts among the most challenging. Student feedback on CS2 challenges and the adequacy of their CS1 preparations identify possible avenues for improving the CS1-CS2 transition.Comment: The definitive Version of Record was published in 2020 ACM Southeast Conference (ACMSE 2020), April 2-4, 2020, Tampa, FL, USA. 8 page

    Analysis of Clostridium beijerinckii NCIMB 8052's transcriptional response to ferulic acid and its application to enhance the strain tolerance

    Get PDF
    Background: Plant-based cellulose presents the best source of renewable sugars for biofuel production. However, the lignin associated with plant cellulose presents a hurdle as hydrolysis of this component leads to the production of inhibitory compounds, such as ferulic acid. Results: The impacts of ferulic acid, a phenolic compound commonly found in lignin hydrolysates, on the growth, solvent production, and transcriptional responses of Clostridium beijerinckii NCIMB 8052 were determined. Addition of ferulic acid to growing cultures resulted in a decrease in the growth and solvent production by 30% and 25%, respectively, when compared to the control cultures. To better understand the toxicity of this compound, microarray analyses were performed using samples taken from these cultures at three different growth states. Several gene ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified showing significant change at each status, including ATP-binding cassette (ABC) transporters, two component system, and oxidoreductase activity. Moreover, genes related with efflux systems and heat shock proteins were also strongly up-regulated. Among these, expression of the groESL operon was induced by more than fourfold and was consequently selected to improve C. beijerinckii tolerance to ferulic acid. Real-time quantitative PCR (RT-qPCR) analysis confirmed that C. beijerinckii harboring the plasmid, pSAAT-ptb_Gro, had a two-to fivefold increased groESL operon expression during growth of these cultures. Moreover, this strain was more tolerant to ferulic acid as the growth of this recombinant strain and its bioconversion of glucose into solvents were both improved. Conclusions: Using transcriptomics, we identified numerous genes that are differentially expressed when C. beijerinckii cultures were exposed to ferulic acid for varying amounts of time. The operon expressing groESL was consistently up-regulated, suggesting that this gene cluster may contribute to strain tolerance. This was confirmed as recombinant cultures showed both an enhanced growth and solvent yield in the presence of 0.5 g/L ferulic acidopen00

    Experience report: a multi-classroom report on the value of peer instruction

    No full text
    Peer Instruction (PI) has a significant following in physics, biology, and chemistry education. Although many CS educators are aware of PI as a pedagogy, the adoption rate in CS is low. This paper reports on four instructors with varying motivations and course contexts and the value they found in adopting PI. Although there are many documented benefits of PI for students (e.g. increased learning), here we describe the experience of the instructor by looking in detail at one particular question they posed in class. Through discussion of the instructors ’ experiences in their classrooms, we support educators in consideration of whether they would like to have similar classroom experiences. Our primary findings show instructors appreciate that PI assists students in addressing course concepts at a deep level, assists instructors in dynamically adapting their class to address student misunderstandings and, overall, that PI encourages students to be engaged in conversations which help build technical communication skills. We propose that using PI to engage students in these activities can effectively support training in analysis and teamwork skills
    corecore