5 research outputs found
Mice That Express Human Interleukin-8 Have Increased Mobilization of Immature Myeloid Cells, Which Exacerbates Inflammation and Accelerates Colon Carcinogenesis
Background & Aims
Interleukin (IL)-8 has an important role in initiating inflammation in humans, attracting immune cells such as neutrophils through their receptors CXCR1 and CXCR2. IL-8 has been proposed to contribute to chronic inflammation and cancer. However, mice do not have the IL-8 gene, so human cancer cell lines and xenograft studies have been used to study the role of IL-8 in colon and gastric carcinogenesis. We generated mice that carry a bacterial artificial chromosome that encompasses the entire human IL-8 gene, including its regulatory elements (IL-8Tg mice).
Methods
We studied the effects of IL-8 expression in APCmin[superscript +/−] mice and IL-8Tg mice given azoxymethane and dextran sodium sulfate (DSS). We also examined the effects of IL-8 expression in gastric cancer in INS-GAS mice that overexpress gastrin and IL-8Tg mice infected with Helicobacter felis.
Results
In IL-8Tg mice, expression of human IL-8 was controlled by its own regulatory elements, with virtually no messenger RNA or protein detectable under basal conditions. IL-8 was strongly up-regulated on systemic or local inflammatory stimulation, increasing mobilization of immature CD11b[superscript +]Gr-1[superscript +] myeloid cells (IMCs) with thioglycolate-induced peritonitis, DSS-induced colitis, and H. felis–induced gastritis. IL-8 was increased in colorectal tumors from patients and IL-8Tg mice compared with nontumor tissues. IL-8Tg mice developed more tumors than wild-type mice following administration of azoxymethane and DSS. Expression of IL-8 increased tumorigenesis in APCmin[superscript +/−] mice compared with APCmin[superscript +/−] mice that lack IL-8; this was associated with increased numbers of IMCs and angiogenesis in the tumors.
Conclusions
IL-8 contributes to gastrointestinal carcinogenesis by mobilizing IMCs and might be a therapeutic target for gastrointestinal cancers
Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis
Background & Aims: Interleukin (IL)-8 has an important role in initiating inflammation in humans, attracting immune cells such as neutrophils through their receptors CXCR1 and CXCR2. IL-8 has been proposed to contribute to chronic inflammation and cancer. However, mice do not have the IL-8 gene, so human cancer cell lines and xenograft studies have been used to study the role of IL-8 in colon and gastric carcinogenesis. We generated mice that carry a bacterial artificial chromosome that encompasses the entire human IL-8 gene, including its regulatory elements (IL-8Tg mice). Methods: We studied the effects of IL-8 expression in APCmin+/- mice and IL-8Tg mice given azoxymethane and dextran sodium sulfate (DSS). We also examined the effects of IL-8 expression in gastric cancer in INS-GAS mice that overexpress gastrin and IL-8Tg mice infected with Helicobacter felis. Results: In IL-8Tg mice, expression of human IL-8 was controlled by its own regulatory elements, with virtually no messenger RNA or protein detectable under basal conditions. IL-8 was strongly up-regulated on systemic or local inflammatory stimulation, increasing mobilization of immature CD11b+Gr-1+ myeloid cells (IMCs) with thioglycolate-induced peritonitis, DSS-induced colitis, and H. felis-induced gastritis. IL-8 was increased in colorectal tumors from patients and IL-8Tg mice compared with nontumor tissues. IL-8Tg mice developed more tumors than wild-type mice following administration of azoxymethane and DSS. Expression of IL-8 increased tumorigenesis in APCmin+/- mice compared with APCmin+/- mice that lack IL-8; this was associated with increased numbers of IMCs and angiogenesis in the tumors. Conclusions: IL-8 contributes to gastrointestinal carcinogenesis by mobilizing IMCs and might be a therapeutic target for gastrointestinal cancers. © 2013 AGA Institute
K-ras Mutation Targeted to Gastric Tissue Progenitor Cells Results in Chronic Inflammation, an Altered Microenvironment, and Progression to Intraepithelial
Chronic infectious diseases, such as Helicobacter pylori infection, can promote cancer in a large part through induction of chronic inflammation. Oncogenic K-ras mutation in epithelial cells activates inflammatory pathways, which could compensate for a lack of infectious stimulus. Gastric histopathology and putative progenitor markers [doublecortin and calcium/calmodulin-dependent protein kinase-like 1 (Dcamkl1) and keratin 19 (K19)] in K19-K-ras-V12 (K19-kras) transgenic mice were assessed at 3, 6, 12, and 18 months of age, in comparison with Helicobacter felis–infected wild-type littermates. Inflammation was evaluated by reverse transcription–PCR of proinflammatory cytokines, and K19-kras mice were transplanted with green fluorescent protein (GFP)–labeled bone marrow. Both H. felis infection and K-ras mutation induced upregulation of proinflammatory cytokines, expansion of Dcamkl1+ cells, and progression to oxyntic atrophy, metaplasia, hyperplasia, and high-grade dysplasia. K19-kras transgenic mice uniquely displayed mucous metaplasia as early as 3 months and progressed to high-grade dysplasia and invasive intramucosal carcinoma by 20 months. In bone marrow–transplanted K19-kras mice that progressed to dysplasia, a large proportion of stromal cells were GFP+ and bone marrow–derived, but only rare GFP+ epithelial cells were observed. GFP+ bone marrow–derived cells included leukocytes and CD45− stromal cells that expressed vimentin or α smooth muscle actin and were often found surrounding clusters of Dcamkl1+ cells at the base of gastric glands. In conclusion, the expression of mutant K-ras in K19+ gastric epithelial cells can induce chronic inflammation and promote the development of dysplasia.National Institutes of Health (U.S.) (Grant NIH 5R01 CA120979-02)National Institutes of Health (U.S.) (Grant R01 DK060694)National Institutes of Health (U.S.) (Grant U01 CA143056)National Institutes of Health (U.S.) (Grant P30 DK050306)Uehara Memorial Foundatio