136 research outputs found
The Cellular Distribution of Serotonin Transporter Is Impeded on Serotonin-Altered Vimentin Network
BACKGROUND:The C-terminus of the serotonin transporter (SERT) contains binding domains for different proteins and is critical for its functional expression. In endogenous and heterologous expression systems, our proteomic and biochemical analysis demonstrated that an intermediate filament, vimentin, binds to the C-terminus of SERT. It has been reported that 5HT-stimulation of cells leads to disassembly and spatial reorientation of vimentin filaments. METHODOLOGY/PRINCIPAL FINDINGS:We tested the impact of 5HT-stimulation on vimentin-SERT association and found that 5HT-stimulation accelerates the translocation of SERT from the plasma membrane via enhancing the level of association between phosphovimentin and SERT. Furthermore a progressive truncation of the C-terminus of SERT was performed to map the vimentin-SERT association domain. Deletion of up to 20, but not 14 amino acids arrested the transporters at intracellular locations. Although, truncation of the last 14 amino acids, did not alter 5HT uptake rates of transporter but abolished its association with vimentin. To understand the involvement of 5HT in phosphovimentin-SERT association from the plasma membrane, we further investigated the six amino acids between Delta14 and Delta20, i.e., the SITPET sequence of SERT. While the triple mutation on the possible kinase action sites, S(611), T(613), and T(616) arrested the transporter at intracellular locations, replacing the residues with aspartic acid one at a time altered neither the 5HT uptake rates nor the vimentin association of these mutants. However, replacing the three target sites with alanine, either simultaneously or one at a time, had no significant effect on 5HT uptake rates or the vimentin association with transporter. CONCLUSIONS/SIGNIFICANCE:Based on our findings, we propose that phosphate modification of the SITPET sequence differentially, one at a time exposes the vimentin binding domain on the C-terminus of SERT. Conversely, following 5HT stimulation, the association between vimentin-SERT is enhanced which changes the cellular distribution of SERT on an altered vimentin network
3D Hepatic Cultures Simultaneously Maintain Primary Hepatocyte and Liver Sinusoidal Endothelial Cell Phenotypes
Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes) and non-parenchymal (liver sinusoidal endothelial, LSEC) cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs) were cultured in a layered three-dimensional (3D) configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM), which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1) demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism, detoxification and signaling pathways in vitro
Quantitative Phosphoproteomics of CXCL12 (SDF-1) Signaling
CXCL12 (SDF-1) is a chemokine that binds to and signals through the seven transmembrane receptor CXCR4. The CXCL12/CXCR4 signaling axis has been implicated in both cancer metastases and human immunodeficiency virus type 1 (HIV-1) infection and a more complete understanding of CXCL12/CXCR4 signaling pathways may support efforts to develop therapeutics for these diseases. Mass spectrometry-based phosphoproteomics has emerged as an important tool in studying signaling networks in an unbiased fashion. We employed stable isotope labeling with amino acids in cell culture (SILAC) quantitative phosphoproteomics to examine the CXCL12/CXCR4 signaling axis in the human lymphoblastic CEM cell line. We quantified 4,074 unique SILAC pairs from 1,673 proteins and 89 phosphopeptides were deemed CXCL12-responsive in biological replicates. Several well established CXCL12-responsive phosphosites such as AKT (pS473) and ERK2 (pY204) were confirmed in our study. We also validated two novel CXCL12-responsive phosphosites, stathmin (pS16) and AKT1S1 (pT246) by Western blot. Pathway analysis and comparisons with other phosphoproteomic datasets revealed that genes from CXCL12-responsive phosphosites are enriched for cellular pathways such as T cell activation, epidermal growth factor and mammalian target of rapamycin (mTOR) signaling, pathways which have previously been linked to CXCL12/CXCR4 signaling. Several of the novel CXCL12-responsive phosphoproteins from our study have also been implicated with cellular migration and HIV-1 infection, thus providing an attractive list of potential targets for the development of cancer metastasis and HIV-1 therapeutics and for furthering our understanding of chemokine signaling regulation by reversible phosphorylation
Glutathione <em>S</em>-transferase P1 (<em>GSTP1</em>) directly influences platinum drug chemosensitivity in ovarian tumour cell lines
BACKGROUND: Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. METHODS: Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT–PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. RESULTS: Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC(50), respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. CONCLUSIONS: Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients
Polymorphisms of glutathione S-transferases (GST) and thymidylate synthase (TS) – novel predictors for response and survival in gastric cancer patients
To evaluate the predictive value of a panel of gene polymorphisms involved in metabolism of 5-FU and cisplatin on clinical outcome in advanced gastric cancer patients. A total of 52 patients were enrolled in this study. DNA was extracted from paraffin-embedded tumour specimen. Genotypes were determined using PCR-RFLP. Median survival time was 6.0 months (95% CI 3.9;8.1). Overall response rate was 26%. Patients possessing the glutathione S-transferase P1-105 Valine/Valine (GSTP1-105VV) genotype showed a response rate of 67% compared to 21% in patients harbouring at least one GSTP1-105 Isoleucine (GSTP1-105I) allele (P=0.038). GSTP1-105VV patients demonstrated a significant superior median survival time of 15.0 months (95% CI 7.8;22.0) compared to 6.0 months (95% CI 5.1;7.0) in patients with at least one GSTP1-105I allele (P=0.037). Patients possessing a favourable thymidylate synthase (TS) genotype (2R/2R, 2R/3RC, 3RC/3RC) experienced a superior survival time of 10.2 months (95% CI 5.1;15.3) compared to 6.0 months (95% CI 5.0;7.0) in patients with unfavourable TS genotypes (P=0.099). Patients harbouring the GSTP1-105II genotype and one of the unfavourable TS genotypes showed an inferior median survival time of 6.0 months (95% CI 3.9;8.1) compared to 11 months (95% CI 6,23;15,77) in patients with either GSTP1-105VV or a favourable TS genotype (P=0.044). Testing for TS and GSTP1 polymorphisms may allow identification of gastric cancer patients who will benefit from 5-FU/cisplatin chemotherapy, sparing others the side effects of this chemotherapy
Electrotonic Signals along Intracellular Membranes May Interconnect Dendritic Spines and Nucleus
Synapses on dendritic spines of pyramidal neurons show a remarkable ability to induce phosphorylation of transcription factors at the nuclear level with a short latency, incompatible with a diffusion process from the dendritic spines to the nucleus. To account for these findings, we formulated a novel extension of the classical cable theory by considering the fact that the endoplasmic reticulum (ER) is an effective charge separator, forming an intrinsic compartment that extends from the spine to the nuclear membrane. We use realistic parameters to show that an electrotonic signal may be transmitted along the ER from the dendritic spines to the nucleus. We found that this type of signal transduction can additionally account for the remarkable ability of the cell nucleus to differentiate between depolarizing synaptic signals that originate from the dendritic spines and back-propagating action potentials. This study considers a novel computational role for dendritic spines, and sheds new light on how spines and ER may jointly create an additional level of processing within the single neuron
SNP-SNP interactions in breast cancer susceptibility
BACKGROUND: Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. METHODS: In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. RESULTS: None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. CONCLUSION: The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described. The strategy used here has the potential to identify complex biological links among breast cancer genes and processes. This will provide novel biological information, which will ultimately improve breast cancer risk management
Lipid (per) oxidation in mitochondria:an emerging target in the ageing process?
Lipids are essential for physiological processes such as maintaining membrane integrity, providing a source of energy and acting as signalling molecules to control processes including cell proliferation, metabolism, inflammation and apoptosis. Disruption of lipid homeostasis can promote pathological changes that contribute towards biological ageing and age-related diseases. Several age-related diseases have been associated with altered lipid metabolism and an elevation in highly damaging lipid peroxidation products; the latter has been ascribed, at least in part, to mitochondrial dysfunction and elevated ROS formation. In addition, senescent cells, which are known to contribute significantly to age-related pathologies, are also associated with impaired mitochondrial function and changes in lipid metabolism. Therapeutic targeting of dysfunctional mitochondrial and pathological lipid metabolism is an emerging strategy for alleviating their negative impact during ageing and the progression to age-related diseases. Such therapies could include the use of drugs that prevent mitochondrial uncoupling, inhibit inflammatory lipid synthesis, modulate lipid transport or storage, reduce mitochondrial oxidative stress and eliminate senescent cells from tissues. In this review, we provide an overview of lipid structure and function, with emphasis on mitochondrial lipids and their potential for therapeutic targeting during ageing and age-related disease
- …