15,795 research outputs found

    Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry

    Full text link
    We investigate the response of two-dimensional pattern forming systems with a broken up-down symmetry, such as chemical reactions, to spatially resonant forcing and propose related experiments. The nonlinear behavior immediately above threshold is analyzed in terms of amplitude equations suggested for a 1:21:2 and 1:11:1 ratio between the wavelength of the spatial periodic forcing and the wavelength of the pattern of the respective system. Both sets of coupled amplitude equations are derived by a perturbative method from the Lengyel-Epstein model describing a chemical reaction showing Turing patterns, which gives us the opportunity to relate the generic response scenarios to a specific pattern forming system. The nonlinear competition between stripe patterns and distorted hexagons is explored and their range of existence, stability and coexistence is determined. Whereas without modulations hexagonal patterns are always preferred near onset of pattern formation, single mode solutions (stripes) are favored close to threshold for modulation amplitudes beyond some critical value. Hence distorted hexagons only occur in a finite range of the control parameter and their interval of existence shrinks to zero with increasing values of the modulation amplitude. Furthermore depending on the modulation amplitude the transition between stripes and distorted hexagons is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review

    High-speed bipolar phototransistors in a 180nm CMOS process

    Get PDF
    AbstractSeveral high-speed pnp phototransistors built in a standard 180nm CMOS process are presented. The phototransistors were implemented in sizes of 40×40μm2 and 100×100μm2. Different base and emitter areas lead to different characteristics of the phototransistors. As starting material a p+ wafer with a p− epitaxial layer on top was used. The phototransistors were optically characterized at wavelengths of 410, 675 and 850nm. Bandwidths up to 92MHz and dynamic responsivities up to 2.95A/W were achieved. Evaluating the results, we can say that the presented phototransistors are well suited for high speed photosensitive optical applications where inherent amplification is needed. Further on, the standard silicon CMOS implementation opens the possibility for cheap integration of integrated optoelectronic circuits. Possible applications for the presented phototransistors are low cost high speed image sensors, opto-couplers, etc

    Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED

    Get PDF
    We investigate the influence of the electron-phonon interaction on the decay dynamics of a quantum dot coupled to an optical microcavity. We show that the electron-phonon interaction has important consequences on the dynamics, especially when the quantum dot and cavity are tuned out of resonance, in which case the phonons may add or remove energy leading to an effective non-resonant coupling between quantum dot and cavity. The system is investigated using two different theoretical approaches: (i) a second-order expansion in the bare phonon coupling constant, and (ii) an expansion in a polaron-photon coupling constant, arising from the polaron transformation which allows an accurate description at high temperatures. In the low temperature regime we find excellent agreement between the two approaches. An extensive study of the quantum dot decay dynamics is performed, where important parameter dependencies are covered. We find that in general the electron-phonon interaction gives rise to a greatly increased bandwidth of the coupling between quantum dot and cavity. At low temperature an asymmetry in the quantum dot decay rate is observed, leading to a faster decay when the quantum dot has a larger energy than to the cavity. We explain this as due to the absence of phonon absorption processes. Furthermore, we derive approximate analytical expressions for the quantum dot decay rate, applicable when the cavity can be adiabatically eliminated. The expressions lead to a clear interpretation of the physics and emphasizes the important role played by the effective phonon density, describing the availability of phonons for scattering, in quantum dot decay dynamics. Based on the analytical expressions we present the parameter regimes where phonon effects are expected to be important. Also, we include all technical developments in appendices.Comment: published PRB version, comments are very welcom

    Hydraulic architecture of palms

    Get PDF
    Journal ArticleThe water transport and storage system of palms is adapted to maintain the primary stem xylem functional over the life of the shoot, and in spite of severe drought. However, our structural information far exceeds our knowledge of vascular function, and these functional considerations bring more questions than answers. The tendency to generalize from limited data on a few species begs the question of how the hydraulic parameters discussed vary between palms with different growth forms and ecologies

    Particles held by springs in a linear shear flow exhibit oscillatory motion

    Get PDF
    The dynamics of small spheres, which are held by linear springs in a low Reynolds number shear flow at neighboring locations is investigated. The flow elongates the beads and the interplay of the shear gradient with the nonlinear behavior of the hydrodynamic interaction among the spheres causes in a large range of parameters a bifurcation to a surprising oscillatory bead motion. The parameter ranges, wherein this bifurcation is either super- or subcritical, are determined.Comment: 4 pages, 5 figure

    Sortenbedingte Unterschiede der N-Effizienz und Beziehung zum Wurzelwachstums von Weizen (Triticum aestivum L.) unter den Bedingungen des Ökologischen Landbaus

    Get PDF
    N Uptake at EC 32, 62 and 92 was determined in 6 wheat varieties in field trials under conditions of conventional and organic farming over 3 years. Root growth potential was assessed in a separate trial under controlled conditions. Rank of varieties regarding N-uptake was dependent on yield level of the test environments and was mainly due to differences in uptake during grain filling. In one variety high N uptake potential coincided with high root growth in later growth stages

    Matching of the continuous gravitational wave in an all sky search

    Get PDF
    We investigate the matching of continuous gravitational wave (CGW) signals in an all sky search with reference to Earth based laser interferometric detectors. We consider the source location as the parameters of the signal manifold and templates corresponding to different source locations. It has been found that the matching of signals from locations in the sky that differ in their co-latitude and longitude by π\pi radians decreases with source frequency. We have also made an analysis with the other parameters affecting the symmetries. We observe that it may not be relevant to take care of the symmetries in the sky locations for the search of CGW from the output of LIGO-I, GEO600 and TAMA detectors.Comment: 16 pages, 7 figures, 3 Tables, To appear in Int. J. Mod. Phys.

    Fourier transform pure nuclear quadrupole resonance by pulsed field cycling

    Get PDF
    We report the observation of Fourier transform pure NQR by pulsed field cycling. For deuterium, well resolved spectra are obtained with high sensitivity showing the low frequency nu0 lines and allowing assignments of quadrupole couplings and asymmetry parameters to inequivalent deuterons. The technique is ideally applicable to nuclei with low quadrupolar frequencies (e.g., 2D, 7Li, 11B, 27Al, 23Na, 14N) and makes possible high resolution structure determination in polycrystalline or disordered materials

    Characterizing flows with an instrumented particle measuring Lagrangian accelerations

    Full text link
    We present in this article a novel Lagrangian measurement technique: an instrumented particle which continuously transmits the force/acceleration acting on it as it is advected in a flow. We develop signal processing methods to extract information on the flow from the acceleration signal transmitted by the particle. Notably, we are able to characterize the force acting on the particle and to identify the presence of a permanent large-scale vortex structure. Our technique provides a fast, robust and efficient tool to characterize flows, and it is particularly suited to obtain Lagrangian statistics along long trajectories or in cases where optical measurement techniques are not or hardly applicable.Comment: submitted to New Journal of Physic
    corecore