21 research outputs found

    Application of the relevance vector machine to canal flow prediction in the Sevier River Basin

    No full text
    This work addresses management of water for irrigation in arid regions where significant delays between the time of order and the time of delivery present major difficulties. Motivated by improvements to water management that will be facilitated by an ability to predict water demand, it employs a data-driven approach to developing canal flow prediction models using the relevance vector machine (RVM), a probabilistic kernel-based learning machine. A search is performed across model attributes including input set, kernel scale parameter and model update scheme for models providing superior prediction capability using the RVM. Models are developed for two canals in the Sevier River Basin of southern Utah for prediction horizons of up to 5 days

    Count data of classified sequences from sedimentary ancient DNA shotgun metagenomics of core SO201-2-12KL

    No full text
    We applied metagenomic shotgun sequencing to a sedimentary ancient DNA (sedaDNA) record from the North Pacific (off Kamchatka) covering the last 20,000 years to trace temporal changes in ecosystem composition and food webs. This dataset contains count data before re-sampling for (1) phototrophic bacterial and eukaryotic pelagic families, (2) and eukaryotic benthic families, and (3) a list of detected marine pelagic and benthic organisms resolved on family level, their trophic status, total number of read counts and the number of links (positive correlations with other families) in the correlation networks. Associated sequencing data, on which the taxonomic classifications are based on, can be found at the European Nucleotide Archive (ENA) under BIOPROJECT: PRJEB46821

    Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)

    Get PDF
    Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and nonpollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4–11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.publishe

    Pollen profile of sediment core BK-8

    No full text
    Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions
    corecore