268 research outputs found

    Integrin-dependent control of translation: engagement of integrin alphaIIbbeta3 regulates synthesis of proteins in activated human platelets.

    Get PDF
    Integrins are widely expressed plasma membrane adhesion molecules that tether cells to matrix proteins and to one another in cell-cell interactions. Integrins also transmit outside-in signals that regulate functional responses of cells, and are known to influence gene expression by regulating transcription. In previous studies we found that platelets, which are naturally occurring anucleate cytoplasts, translate preformed mRNA transcripts when they are activated by outside-in signals. Using strategies that interrupt engagement of integrin alphaIIbbeta3 by fibrinogen and platelets deficient in this integrin, we found that alphaIIbbeta3 regulates the synthesis of B cell lymphoma 3 (Bcl-3) when platelet aggregation is induced by thrombin. We also found that synthesis of Bcl-3, which occurs via a specialized translation control pathway regulated by mammalian target of rapamycin (mTOR), is induced when platelets adhere to immobilized fibrinogen in the absence of thrombin and when integrin alphaIIbbeta3 is engaged by a conformation-altering antibody against integrin alphaIIbbeta3. Thus, outside-in signals delivered by integrin alphaIIbbeta3 are required for translation of Bcl-3 in thrombin-stimulated aggregated platelets and are sufficient to induce translation of this marker protein in the absence of thrombin. Engagement of integrin alpha2beta1 by collagen also triggered synthesis of Bcl-3. Thus, control of translation may be a general mechanism by which surface adhesion molecules regulate gene expression

    Regulation of Cyclooxygenase-2 Expression by the Translational Silencer TIA-1

    Get PDF
    The cyclooxygenase-2 (COX-2) enzyme catalyzes the rate-limiting step of prostaglandin formation in inflammatory states, and COX-2 overexpression plays a key role in carcinogenesis. To understand the mechanisms regulating COX-2 expression, we examined its posttranscriptional regulation mediated through the AU-rich element (ARE) within the COX-2 mRNA 3′-untranslated region (3′UTR). RNA binding studies, performed to identify ARE-binding regulatory factors, demonstrated binding of the translational repressor protein TIA-1 to COX-2 mRNA. The significance of TIA-1-mediated regulation of COX-2 expression was observed in TIA-1 null fibroblasts that produced significantly more COX-2 protein than wild-type fibroblasts. However, TIA-1 deficiency did not alter COX-2 transcription or mRNA turnover. Colon cancer cells demonstrated to overexpress COX-2 through increased polysome association with COX-2 mRNA also showed defective TIA-1 binding both in vitro and in vivo. These findings implicate that TIA-1 functions as a translational silencer of COX-2 expression and support the hypothesis that dysregulated RNA-binding of TIA-1 promotes COX-2 expression in neoplasia

    Activated platelets mediate inflammatory signaling by regulated interleukin 1β synthesis

    Get PDF
    Platelets release preformed mediators and generate eicosanoids that regulate acute hemostasis and inflammation, but these anucleate cytoplasts are not thought to synthesize proteins or cytokines, or to influence inflammatory responses over time. Interrogation of an arrayed cDNA library demonstrated that quiescent platelets contain many messenger RNAs, one of which codes for interleukin 1β precursor (pro–IL-1β). Unexpectedly, the mRNA for IL-1β and many other transcripts are constitutively present in polysomes, providing a mechanism for rapid synthesis. Platelet activation induces rapid and sustained synthesis of pro–IL-1β protein, a response that is abolished by translational inhibitors. A portion of the IL-1β is shed in its mature form in membrane microvesicles, and induces adhesiveness of human endothelial cells for neutrophils. Signal-dependent synthesis of an active cytokine over several hours indicates that platelets may have previously unrecognized roles in inflammation and vascular injury. Inhibition of β3 integrin engagement markedly attenuated the synthesis of IL-1β, identifying a new link between the coagulation and inflammatory cascades, and suggesting that antithrombotic therapies may also have novel antiinflammatory effects

    Activated Polymorphonuclear Leukocytes Rapidly Synthesize Retinoic Acid Receptor-α: A Mechanism for Translational Control of Transcriptional Events

    Get PDF
    In addition to releasing preformed granular proteins, polymorphonuclear leukocytes (PMNs) synthesize chemokines and other factors under transcriptional control. Here we demonstrate that PMNs express an inducible transcriptional modulator by signal-dependent activation of specialized mechanisms that regulate messenger RNA (mRNA) translation. HL-60 myelocytic cells differentiated to surrogate PMNs respond to activation by platelet activating factor by initiating translation and with appearance of specific mRNA transcripts in polyribosomes. cDNA array analysis of the polyribosome fraction demonstrated that retinoic acid receptor (RAR)-α, a transcription factor that controls the expression of multiple genes, is one of the polyribosome-associated transcripts. Quiescent surrogate HL60 PMNs and primary human PMNs contain constitutive message for RAR-α but little or no protein. RAR-α protein is rapidly synthesized in response to platelet activating factor under the control of a specialized translational regulator, mammalian target of rapamycin, and is blocked by the therapeutic macrolide rapamycin, events consistent with features of the 5′ untranslated region of the transcript. Newly synthesized RAR-α modulates production of interleukin-8. Rapid expression of a transcription factor under translational control is a previously unrecognized mechanism in human PMNs that indicates unexpected diversity in gene regulation in this critical innate immune effector cell

    Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenecity of human platelets

    Get PDF
    Tissue factor (TF) is an essential cofactor for the activation of blood coagulation in vivo. We now report that quiescent human platelets express TF pre-mRNA and, in response to activation, splice this intronic-rich message into mature mRNA. Splicing of TF pre-mRNA is associated with increased TF protein expression, procoagulant activity, and accelerated formation of clots. Pre-mRNA splicing is controlled by Cdc2-like kinase (Clk)1, and interruption of Clk1 signaling prevents TF from accumulating in activated platelets. Elevated intravascular TF has been reported in a variety of prothrombotic diseases, but there is debate as to whether anucleate platelets—the key cellular effector of thrombosis—express TF. Our studies demonstrate that human platelets use Clk1-dependent splicing pathways to generate TF protein in response to cellular activation. We propose that platelet-derived TF contributes to the propagation and stabilization of a thrombus

    Germline Mutations in NFKB2 Implicate the Noncanonical NF-κB Pathway in the Pathogenesis of Common Variable Immunodeficiency

    Get PDF
    Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections. To investigate the molecular cause of CVID, we carried out exome sequence analysis of a family diagnosed with CVID and identified a heterozygous frameshift mutation, c.2564delA (p.Lys855Serfs∗7), in NFKB2 affecting the C terminus of NF-κB2 (also known as p100/p52 or p100/p49). Subsequent screening of NFKB2 in 33 unrelated CVID-affected individuals uncovered a second heterozygous nonsense mutation, c.2557C>T (p.Arg853∗), in one simplex case. Affected individuals in both families presented with an unusual combination of childhood-onset hypogammaglobulinemia with recurrent infections, autoimmune features, and adrenal insufficiency. NF-κB2 is the principal protein involved in the noncanonical NF-κB pathway, is evolutionarily conserved, and functions in peripheral lymphoid organ development, B cell development, and antibody production. In addition, Nfkb2 mouse models demonstrate a CVID-like phenotype with hypogammaglobulinemia and poor humoral response to antigens. Immunoblot analysis and immunofluorescence microscopy of transformed B cells from affected individuals show that the NFKB2 mutations affect phosphorylation and proteasomal processing of p100 and, ultimately, p52 nuclear translocation. These findings describe germline mutations in NFKB2 and establish the noncanonical NF-κB signaling pathway as a genetic etiology for this primary immunodeficiency syndrome

    Encephalomyocarditis virus may use different pathways to initiateinfection of primary human cardiomyocytes

    Get PDF
    Encephalomyocarditis virus (EMCV) caninfect a wide range of vertebrate species including swineand non-human primates, but few data are available forhumans. We therefore wanted to gain further insight intothe mechanisms involved in EMCV infection of humancells. For this purpose, we analyzed the permissiveness ofprimary human cardiomyocytes towards two strains ofEMCV; a pig myocardial strain (B279/95) and a rat strain(1086C). In this study, we show that both strains productivelyinfect primary human cardiomyocytes and inducecomplete cytolysis. Binding and infection inhibitionexperiments indicated that attachment and infection areindependent of sialic acid and heparan sulfate for B279/95and dependent for 1086C. Sequence comparison betweenthe two strains and three-dimensional analysis of the capsidrevealed that six of the seven variable residues are surfaceexposed,suggesting a role for these amino acids in binding.Moreover, analysis of variants isolated from the 1086Cstrain revealed the importance of lysine 231 of VP1 in theattachment of EMCV to cell-surface sialic acid residues.Together, these results show a potential for EMCV strainsto use at least two different binding possibilities to initiateinfection and provide new insights into the mechanismsinvolved in primary human cell recognition by EMCV
    • …
    corecore