312 research outputs found
Alternative Splicing of the Cardiac Sodium Channel Creates Multiple Variants of Mutant T1620K Channels
Alternative splicing creates several Nav1.5 transcripts in the mammalian myocardium and in various other tissues including brain, dorsal root ganglia, breast cancer cells as well as neuronal stem cell lines. In total nine Nav1.5 splice variants have been discovered. Four of them, namely Nav1.5a, Nav1.5c, Nav1.5d, and Nav1.5e, generate functional channels in heterologous expression systems. The significance of alternatively spliced transcripts for cardiac excitation, in particular their role in SCN5A channelopathies, is less well understood. In the present study, we systematically investigated electrophysiological properties of mutant T1620K channels in the background of all known functional Nav1.5 splice variants in HEK293 cells. This mutation has been previously associated with two distinct cardiac excitation disorders: with long QT syndrome type 3 (LQT3) and isolated cardiac conduction disease (CCD). When investigating the effect of the T1620K mutation, we noticed similar channel defects in the background of hNav1.5, hNav1.5a, and hNav1.5c. In contrast, the hNav1.5d background produced differential effects: In the mutant channel, some gain-of-function features did not emerge, whereas loss-of-function became more pronounced. In case of hNav1.5e, the neonatal variant of hNav1.5, both the splice variant itself as well as the corresponding mutant channel showed electrophysiological properties that were distinct from the wild-type and mutant reference channels, hNav1.5 and T1620K, respectively. In conclusion, our data show that alternative splicing is a mechanism capable of generating a variety of functionally distinct wild-type and mutant hNav1.5 channels. Thus, the cellular splicing machinery is a potential player affecting genotype-phenotype correlations in SCN5A channelopathies
Feeding spectra and activity of the freshwater crab Trichodactylus kensleyi (Decapoda: Brachyura: Trichodactylidae) at La Plata basin
Background: In inland water systems, it is important to characterize the trophic links in order to identify the ‘trophic species’ and, from the studies of functional diversity, understand the dynamics of matter and energy in these environments. The aim of this study is to analyze the natural diet of Trichodactylus kensleyi of subtropical rainforest streams and corroborate the temporal variation in the trophic activity during day hours.
Results: A total of 15 major taxonomic groups were recognized in gut contents. The index of relative importance identified the following main prey items in decreasing order of importance: vegetal remains, oligochaetes, chironomid larvae, and algae. A significant difference was found in the amount of full stomachs during day hours showing a less trophic activity at midday and afternoon. The index of relative importance values evidenced the consumption of different prey according to day moments. Results of the gut content indicate that T. kensleyi is an omnivorous crab like other trichodactylid species. Opportunistic behavior is revealed by the ingestion of organisms abundant in streams such as oligochaetes and chironomid larvae. The consumption of allochthonous plant debris shows the importance of this crab as shredder in subtropical streams. However, the effective assimilation of plant matter is yet unknown in trichodactylid crabs.
Conclusions: This research provides knowledge that complements previous studies about trophic relationships of trichodactylid crabs and supported the importance of T. kensleyi in the transference of energy and matter from benthic community and riparian sources to superior trophic levels using both macro- and microfauna.Fil: Williner, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Humanidades y Ciencias; ArgentinaFil: de Azevedo Carvalho, Debora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Collins, Pablo Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentin
Individual Preferences and Social Interactions Determine the Aggregation of Woodlice
n°e17389.info:eu-repo/semantics/publishe
Tumor Growth Decreases NK and B Cells as well as Common Lymphoid Progenitor
Background: It is well established that chronic tumor growth results in functional inactivation of T cells and NK cells. It is less clear, however, whether lymphopoeisis is affected by tumor growth. Principal Findings: In our efforts of analyzing the impact of tumor growth on NK cell development, we observed a major reduction of NK cell numbers in mice bearing multiple lineages of tumor cells. The decrease in NK cell numbers was not due to increased apoptosis or decreased proliferation in the NK compartment. In addition, transgenic expression of IL-15 also failed to rescue the defective production of NK cells. Our systematic characterization of lymphopoeisis in tumor-bearing mice indicated that the number of the common lymphoid progenitor was significantly reduced in tumor-bearing mice. The number of B cells also decreased substantially in tumor bearing mice. Conclusions and Significance: Our data reveal a novel mechanism for tumor evasion of host immunity and suggest a new interpretation for the altered myeloid and lymphoid ratio in tumor bearing hosts
Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™
In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many endangered marine mammal species
Distinct Cerebrospinal Fluid Proteomes Differentiate Post-Treatment Lyme Disease from Chronic Fatigue Syndrome
Neurologic Post Treatment Lyme disease (nPTLS) and Chronic Fatigue (CFS) are syndromes of unknown etiology. They share features of fatigue and cognitive dysfunction, making it difficult to differentiate them. Unresolved is whether nPTLS is a subset of CFS. Methods and Principal Findings: Pooled cerebrospinal fluid (CSF) samples from nPTLS patients, CFS patients, and healthy volunteers were comprehensively analyzed using high-resolution mass spectrometry (MS), coupled with immunoaffinity depletion methods to reduce protein-masking by abundant proteins. Individual patient and healthy control CSF samples were analyzed directly employing a MS-based label-free quantitative proteomics approach. We found that both groups, and individuals within the groups, could be distinguished from each other and normals based on their specific CSF proteins (p&0.01). CFS (n = 43) had 2,783 non-redundant proteins, nPTLS (n = 25) contained 2,768 proteins, and healthy normals had 2,630 proteins. Preliminary pathway analysis demonstrated that the data could be useful for hypothesis generation on the pathogenetic mechanisms underlying these two related syndromes. Conclusions: nPTLS and CFS have distinguishing CSF protein complements. Each condition has a number of CSF proteins that can be useful in providing candidates for future validation studies and insights on the respective mechanisms of pathogenesis. Distinguishing nPTLS and CFS permits more focused study of each condition, and can lead to novel diagnostics and therapeutic interventions
Influence of ischemic core muscle fibers on surface depolarization potentials in superfused cardiac tissue preparations: a simulation study
Thin-walled cardiac tissue samples superfused with oxygenated solutions are widely used in experimental studies. However, due to decreased oxygen supply and insufficient wash out of waste products in the inner layers of such preparations, electrophysiological functions could be compromised. Although the cascade of events triggered by cutting off perfusion is well known, it remains unclear as to which degree electrophysiological function in viable surface layers is affected by pathological processes occurring in adjacent tissue. Using a 3D numerical bidomain model, we aim to quantify the impact of superfusion-induced heterogeneities occurring in the depth of the tissue on impulse propagation in superficial layers. Simulations demonstrated that both the pattern of activation as well as the distribution of extracellular potentials close to the surface remain essentially unchanged. This was true also for the electrophysiological properties of cells in the surface layer, where most relevant depolarization parameters varied by less than 5.5 %. The main observed effect on the surface was related to action potential duration that shortened noticeably by 53 % as hypoxia deteriorated. Despite the known limitations of such experimental methods, we conclude that superfusion is adequate for studying impulse propagation and depolarization whereas repolarization studies should consider the influence of pathological processes taking place at the core of tissue sample
Reactive Oxygen Species Suppress Cardiac NaV1.5 Expression through Foxo1
NaV1.5 is a cardiac voltage-gated Na+ channel αsubunit and is encoded by the SCN5a gene. The activity of this channel determines cardiac depolarization and electrical conduction. Channel defects, including mutations and decrease of channel protein levels, have been linked to the development of cardiac arrhythmias. The molecular mechanisms underlying the regulation of NaV1.5 expression are largely unknown. Forkhead box O (Foxo) proteins are transcriptional factors that bind the consensus DNA sequences in their target gene promoters and regulate the expression of these genes. Comparative analysis revealed conserved DNA sequences, 5′-CAAAACA-3′ (insulin responsive element, IRE), in rat, mouse and human SCN5a promoters with the latter two containing two overlapping Foxo protein binding IREs, 5′-CAAAACAAAACA-3′. This finding led us to hypothesize that Foxo1 regulates NaV1.5 expression by directly binding the SCN5a promoter and affecting its transcriptional activity. In the present study, we determined whether Foxo1 regulates NaV1.5 expression at the transcriptional level and also defined the role of Foxo1 in hydrogen peroxide (H2O2)-mediated NaV1.5 suppression in HL-1 cardiomyocytes using chromatin immunoprecipitation (ChIP), constitutively nuclear Foxo1 expression, and RNAi Foxo1 knockdown as well as whole cell voltage-clamp recordings. ChIP with anti-Foxo1 antibody and follow-up semi-quantitative PCR with primers flanking Foxo1 binding sites in the proximal SCN5a promoter region clearly demonstrated enrichment of DNA, confirming Foxo1 recruitment to this consensus sequence. Foxo1 mutant (T24A/S319A-GFP, Foxo1-AA-GFP) was retained in nuclei, leading to a decrease of NaV1.5 expression and Na+ current, while silencing of Foxo1 expression by RNAi resulted in the augmentation of NaV1.5 expression. H2O2 significantly reduced NaV1.5 expression by promoting Foxo1 nuclear localization and this reduction was prevented by RNAi silencing Foxo1 expression. These studies indicate that Foxo1 negatively regulates NaV1.5 expression in cardiomyocytes and reactive oxygen species suppress NaV1.5 expression through Foxo1
- …