236 research outputs found

    Flocs, flows, and mechanisms decoupling larval supply from settlement

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 936-944, doi:10.4319/lo.2012.57.4.0936.Larval supply, settlement (24 h), and recruitment were measured simultaneously with flow and flocculated particulates (flocs) in a muddy, coastal embayment. Fortuitous observations indicated that flocs drifting above the bed touched down at slack tide. Unexpectedly, results showed that larval supply did not portend settlement for the two most abundant polychaetes, Mediomastus ambiseta (resident mud dweller) and Sabellaria vulgaris (nonresident sand dweller). Both variables fluctuated widely and were decoupled. Colonization of mud vs. sand trays was not significantly different, also due to high variances. A statistical power analysis indicated that resolving selectivity would require 45 (median) paired, replicate treatments. Time series of near-bed planktonic larvae showed sizeable and sporadic spikes. Even 24-h means failed to predict settlement. Sabellaria was numerous in zooplankton pump collections, rare in trays, and nonexistent in ambient sediments. In contrast, Mediomastus was absent from pump samples, but dominated mud trays and bottom cores. Floc contents, however, lend insight into these distributions. Densities (of order 105 m-3) of Sabellaria and Mediomastus in flocs greatly exceeded those in tray and pump samples (of order 103 m-3). Located between the water column and seafloor, organic-rich flocs may offer transient larvae food, shelter, transport, and perusal of settlement sites. When aggregates touch down, entrained Mediomastus might exit upon contact with suitable ambient sediments, whereas nonresident Sabellaria remain suspended. Flocs may thus play a critical role in shaping connectivity and structuring species distributions.This study was supported by the National Science Foundation (Division of Ocean Sciences, OCE 08-52361) and the University of California at Los Angeles Council on Research

    Life in the lee: Local distributions and orientations of honeycomb worms along the California coast

    Get PDF
    In the rocky intertidal, invertebrates living in dense, intraspecific groups may be particularly important community members because they provide structural habitat for other species. Despite the prevalence of conspecific aggregates, there is scant knowledge of the proximate and ultimate causes of their distributions. Phragmatopoma californica is a gregarious, suspension-feeding tubeworm that forms extensive reefs ( honeycombs ) along the California coast. Local distributions and sizes of worm aggregations, tube orientations and worm mass were quantified to identify patterns and generate hypotheses regarding potential structuring processes. Field surveys were conducted at five intertidal boulder fields in northern and southern California, spanning much of this species\u27 range. Observational data were obtained at four ecologically meaningful spatial scales. The most striking patterns occurred at the smallest (\u3c1 m, individual rock), pervading throughout the largest (50–500 km, among beaches), scales. Aggregations were significantly more abundant and larger on back (shoreward) than front (seaward) faces of boulders. Worm tube orientations also showed a significant directional bias that differed between opposing rock surfaces. In contrast, worm mass was not significantly different between the two faces, perhaps due to relatively uniform growth conditions on the scale of a rock or because worms had reached a terminal size. We hypothesize that within-rock aggregation distributions are associated with the local boulder-induced flow regime. The recirculation zone that forms in the lee of a flow obstacle (rock) would preferentially retain larvae, and thus, enhance the flux of settlers to the back surface. Potentially a region of relatively low wave disturbance and high fertilization rate, life in the lee may be yet another adaptation for survival in the hostile rocky intertidal

    Larval settlement in flocculated particulates

    Get PDF
    Author Posting. © The Authors, 2008. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 66 (2008): 275-297, doi:10.1357/002224008785837167.Planktonic larval settlement can be a major determinant of population and community dynamics. Settlement templates of benthic invertebrates have been attributed to biological, chemical, and hydrodynamic mechanisms. Completely unexplored, however, is the role of patchy, but widespread, flocculated particulates (“floc”) that intermittently rest on substrate surfaces. Motivated by observations of very high (of order 106 m-3) larval/postlarval densities in floc from a coastal embayment, this study experimentally identified physical and behavioral mechanisms responsible for these associations. In annular-flume studies, sediment cores were mounted flush with the channel bottom, serving as the floc source. Larval (Capitella sp. I, a polychaete worm) distributions in the flume were consistent with predictions for transported particulates. Floc and larvae accumulated at the channel inner corner in high flows (shear velocities, u*, of 0.8 and 1.6 cm s-1), but not in low flows (u* of 0, 0.2 and 0.4 cm s-1). Inner-corner concentrations of larvae/floc resulted from a predictable, cross-channel, bottom flow in that direction. In still-water behavioral assays, there were no significant differences in percent metamorphosis among flocs fabricated from particulate-laden seawater, conspecific fecal pellets (compact floc) and organic-rich sediment. Surficial aggregates clearly were acceptable settlement substratum. This study is the first to show that settling larvae associate with surficial aggregates via both physical and behavioral mechanisms. Floc may be a transient larval venue facilitating habitat search, providing nutrition, or offering protection from predators. Alternatively, it could confer high mortality, reducing larval flux to the bed. Associations between larvae and floc do not supersede established mechanisms of habitat selection. They just thicken the plot.This study was supported by the National Science Foundation (OCE 97-29972 and OCE 02-42321), NOAA California Sea Grant College Program (R/F-197) and the UCLA Council on Research

    A multifunctional chemical cue drives opposing demographic processes and structures ecological communities

    Get PDF
    Foundation species provide critical resources to ecological community members and are key determinants of biodiversity. The barnacle Balanus glandula is one such species and dominates space among the higher reaches of wave-swept shores (Northeastern Pacific Ocean). This animal produces a cuticular glycoprotein (named "MULTIFUNCin") of 199.6\ua0kDa, and following secretion, a 390\ua0kDa homodimer in native form. From field and lab experiments, we found that MULTIFUNCin significantly induces habitat selection by conspecific larvae, while simultaneously acting as a potent feeding stimulant to a major barnacle predator (whelk, Acanthinucella spirata). Promoting immigration via settlement on the one hand, and death via predation on the other, MULTIFUNCin drives opposing demographic processes toward structuring predator and prey populations. As shown here, a single compound is not restricted to a lone species interaction or sole ecological function. Complex biotic interactions therefore can be shaped by simple chemosensory systems and depend on the multifunctional properties of select bioactive proteins

    Evidence for hydrodynamic orientation by spiny lobsters in a patch reef environment

    Get PDF
    Western Atlantic spiny lobsters (Panulirus argus) are superb underwater navigators. Spiny lobsters perform dramatic seasonal offshore migrations and have also been shown to locate and home to specific den sites within the elaborate coral reef environment in which they live. How these animals perform such complex orientation tasks is not known. The study reported here was designed to explore the sensory mechanisms that spiny lobsters use to orient in and around a familiar patch reef environment. Our results show that, in the absence of visual cues, lobsters displaced a short (50 m) distance off the reef do not initially (i.e. within 20 min) travel towards their dens or return to the patch reef where their dens are located. Instead, the headings lobsters follow are significantly correlated to the direction of local hydrodynamic cues and, specifically, to the direction of approaching wave surge. Results from ultrasonic tracking experiments over longer periods (24 h) suggest that displaced lobsters are able to relocate the reef where they were captured, even without visual cues. These results suggest that hydrodynamic cues may provide useful and immediate directional information to lobsters within the local environment of the home reef

    How Low Can You Go?: Widespread Challenges in Measuring Low Stream Discharge and a Path Forward

    Get PDF
    Low flows pose unique challenges for accurately quantifying streamflow. Current field methods are not optimized to measure these conditions, which in turn, limits research and management. In this essay, we argue that the lack of methods for measuring low streamflow is a fundamental challenge that must be addressed to ensure sustainable water management now and into the future, particularly as climate change shifts more streams to increasingly frequent low flows. We demonstrate the pervasive challenge of measuring low flows, present a decision support tool (DST) for navigating best practices in measuring low flows, and highlight important method developmental needs

    Factors Mediating Alcohol Craving and Relapse: Stress, Compulsivity, and Genetics

    Get PDF
    This article represents the proceedings of a symposium at the 2004 annual meeting of the International Society for Biomedical Research on Alcoholism in Heidelberg, Germany. The symposium was organized by Zachary A. Rodd and Giancarlo Colombo. The presentations were (1) Pharmacological reversal of cycled withdrawal-sensitized or stress-sensitized withdrawal anxiety and enhanced ethanol drinking, by Darin J. Knapp and George R. Breese, (2) Alcohol craving and relapse in rats genetically selected for high alcohol preference, by Zachary A. Rodd and Richard L. Bell, (3) Exposure to stress increases dopaminergic burst firing in awake rats, by Kristin Anstrom and Donald J. Woodward, (4) Involvement of cannabinoid CB1 and GABAB receptors in the control of relapse-like drinking in alcohol-preferring Sardinian alcohol-preferring rats by Giancarlo Colombo and Salvatore Serra, and (5) Stress-induced ethanol drinking in CB1−/−, POMC, and PENK knockout mice, by Idiko Racz and Andreas Zimmer

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella
    corecore