323 research outputs found
The Equation of State of Neutron-Star Matter in Strong Magnetic Fields
We study the effects of very strong magnetic fields on the equation of state
(EOS) in multicomponent, interacting matter by developing a covariant
description for the inclusion of the anomalous magnetic moments of nucleons.
For the description of neutron star matter, we employ a field-theoretical
approach which permits the study of several models which differ in their
behavior at high density. Effects of Landau quantization in ultra-strong
magnetic fields ( Gauss) lead to a reduction in the electron
chemical potential and a substantial increase in the proton fraction. We find
the generic result for Gauss that the softening of the EOS caused
by Landau quantization is overwhelmed by stiffening due to the incorporation of
the anomalous magnetic moments of the nucleons. In addition, the neutrons
become completely spin polarized. The inclusion of ultra-strong magnetic fields
leads to a dramatic increase in the proton fraction, with consequences for the
direct Urca process and neutron star cooling. The magnetization of the matter
never appears to become very large, as the value of never deviates from
unity by more than a few percent. Our findings have implications for the
structure of neutron stars in the presence of large frozen-in magnetic fields.Comment: 40 pages, 7 figures, accepted for publication in Ap
Interplay between soft and hard hadronic components for identified hadrons in relativistic heavy ion collisions
We investigate the transverse dynamics in Au+Au collisions at \sqrt{s_NN}=200
GeV by emphasis upon the interplay between soft and hard components through p_T
dependences of particle spectra, ratios of yields, suppression factors, and
elliptic flow for identified hadrons. From hydrodynamics combined with
traversing minijets which go through jet quenching in the hot medium, we
calculate interactions of hard jets with the soft hydrodynamic components. It
is shown by the explicit dynamical calculations that the hydrodynamic radial
flow and the jet quenching of hard jets are the keys to understand the
differences among the hadron spectra for pions, kaons, and protons. This leads
to the natural interpretation for N_p/N_\pi ~ 1, R_{AA} >~ 1 for protons, and
v_2^p > v_2^\pi recently observed in the intermediate transverse momentum
region at Relativistic Heavy Ion Collider (RHIC).Comment: 11 pages, 9 figures; some references added; title changed, some data
points included in figure
The extended, relativistic hyperon star model
In this paper an equation of state of neutron star matter which includes
strange baryons in the framework of Zimanyi and Moszkowski (ZM) model has been
obtained. We concentrate on the effects of the isospin dependence of the
equation of state constructing for the appropriate choices of parameters the
hyperons star model. Numerous neutron star models show that the appearance of
hyperons is connected with the increasing density in neutron star interiors.
Various studies have indicated that the inclusion of delta meson mainly affects
the symmetry energy and through this the chemical composition of a neutron
star. As the effective nucleon mass contributes to hadron chemical potentials
it alters the chemical composition of the star. In the result the obtained
model of the star not only excludes large population of hadrons but also does
not reduce significantly lepton contents in the star interior.Comment: 22 pages, revtex4, 13 figure
Josephson array of mesoscopic objects. Modulation of system properties through the chemical potential
The phase diagram of a two-dimensional Josephson array of mesoscopic objects
is examined. Quantum fluctuations in both the modulus and phase of the
superconducting order parameter are taken into account within a lattice boson
Hubbard model. Modulating the average occupation number of the sites in
the system leads to changes in the state of the array, and the character of
these changes depends significantly on the region of the phase diagram being
examined. In the region where there are large quantum fluctuations in the phase
of the superconducting order parameter, variation of the chemical potential
causes oscillations with alternating superconducting (superfluid) and normal
states of the array. On the other hand, in the region where the bosons interact
weakly, the properties of the system depend monotonically on . Lowering
the temperature and increasing the particle interaction force lead to a
reduction in the width of the region of variation in within which the
system properties depend weakly on the average occupation number. The phase
diagram of the array is obtained by mapping this quantum system onto a
classical two-dimensional XY model with a renormalized Josephson coupling
constant and is consistent with our quantum Path-Integral Monte Carlo
calculations.Comment: 12 pages, 8 Postscript figure
An asymptotical von-Neumann measurement strategy for solid-state qubits
A measurement on a macroscopic quantum system does in general not lead to a
projection of the wavefunction in the basis of the detector as predicted by
von-Neumann's postulate. Hence, it is a question of fundametal interest, how
the preferred basis onto which the state is projected is selected out of the
macroscopic Hilbert space of the system. Detector-dominated von-Neumann
measurements are also desirable for both quantum computation and verification
of quantum mechanics on a macroscopic scale. The connection of these questions
to the predictions of the spin-boson modelis outlined. I propose a measurement
strategy, which uses the entanglement of the qubit with a weakly damped
harmonic oscillator. It is shown, that the degree of entanglement controls the
degree of renormalization of the qubit and identify, that this is equivalent to
the degree to which the measurement is detector-dominated. This measurement
very rapidly decoheres the initial state, but the thermalization is slow. The
implementation in Josephson quantum bits is described and it is shown that this
strategy also has practical advantages for the experimental implementation.Comment: 4 pages, 3 figures, accepted for publication as a rapid communication
in Phys. Rev.
Vertically Graded Anisotropy in Co/Pd Multilayers
Depth-grading of magnetic anisotropy in perpendicular magnetic media has been
predicted to reduce the field required to write data without sacrificing
thermal stability. To study this prediction, we have produced Co/Pd multilayers
with depth-dependent Co layer thickness. Polarized neutron reflectometry shows
that the thickness grading results in a corresponding magnetic anisotropy
gradient. Magnetometry reveals that the anisotropy gradient promotes domain
nucleation upon magnetization reversal - a clear experimental demonstration of
the effectiveness of graded anisotropy for reducing write-field
Phase Diagram for Splay Glass Superconductivity
Localization of flux lines to splayed columnar pins is studied. A sine-Gordon
type renormalization group study reveals the existence of a Splay glass phase
and yields an analytic form for the transition temperature into the glass
phase. As an independent test, the characteristics are determined via a
Molecular Dynamics code. The glass transition temperature supports the RG
results convincingly. The full phase diagram of the model is constructed.Comment: 14 pages, uuencoded compressed tar file with 3 postscript figure
Remnants of Initial Anisotropic High Energy Density Domains in Nucleus-Nucleus Collisions
Anisotropic high energy density domains may be formed at early stages of
ultrarelativistic heavy ion collisions, e.g. due to phase transition dynamics
or non-equilibrium phenomena like (mini-)jets. Here we investigate hadronic
observables resulting from an initially created anisotropic high energy density
domain. Based on our studies using a transport model we find that the initial
anisotropies are reflected in the freeze-out multiplicity distribution of both
pions and kaons due to secondary hadronic rescattering. The anisotropy appears
to be stronger for particles at high transverse momenta. The overall kaon
multiplicity increases with large fluctuations of local energy densities, while
no change has been found in the pion multiplicity.Comment: Submitted to PR
Parquet solution for a flat Fermi surface
We study instabilities occurring in the electron system whose Fermi surface
has flat regions on its opposite sides. Such a Fermi surface resembles Fermi
surfaces of some high- superconductors. In the framework of the parquet
approximation, we classify possible instabilities and derive
renormalization-group equations that determine the evolution of corresponding
susceptibilities with decreasing temperature. Numerical solutions of the
parquet equations are found to be in qualitative agreement with a ladder
approximation. For the repulsive Hubbard interaction, the antiferromagnetic
(spin-density-wave) instability dominates, but when the Fermi surface is not
perfectly flat, the -wave superconducting instability takes over.Comment: REVTeX, 36 pages, 20 ps figures inserted via psfig. Submitted to
Phys. Rev.
- …