2,446 research outputs found

    All (qubit) decoherences: Complete characterization and physical implementation

    Full text link
    We investigate decoherence channels that are modelled as a sequence of collisions of a quantum system (e.g., a qubit) with particles (e.g., qubits) of the environment. We show that collisions induce decoherence when a bi-partite interaction between the system qubit and an environment (reservoir) qubit is described by the controlled-U unitary transformation (gate). We characterize decoherence channels and in the case of a qubit we specify the most general decoherence channel and derive a corresponding master equation. Finally, we analyze entanglement that is generated during the process of decoherence between the system and its environment.Comment: 10 pages, 3 figure

    Generalized Kinetic Theory of Electrons and Phonons

    Full text link
    A Generalized Kinetic Theory was proposed in order to have the possibility to treat particles which obey a very general statistics. By adopting the same approach, we generalize here the Kinetic Theory of electrons and phonons. Equilibrium solutions and their stability are investigated.Comment: Proceedings of the International School and Workshop on Nonextensive Thermodynamics and Physical Applications, NEXT 2001, 23-30 May 2001, Cagliari (Italy) (To appear in Physica A

    Space fragment in studies of the Earth

    Get PDF
    The fragment apparatus, mounted on board the artificial earth satellite Meteor, was created for the operational study of the natural resources of the Earth in the optical range of electromagnetic waves. The orbit of the satellite at an altitude of about 650 km makes it possible to observe the same sectors of the Earth's surface at the same time of day with a periodicity of 15 days

    Concurrence vs. purity: Influence of local channels on Bell states of two qubits

    Full text link
    We analyze how a maximally entangled state of two-qubits (e.g., the singlet ψs\psi_s) is affected by action of local channels described by completely positive maps \cE . We analyze the concurrence and the purity of states \varrho_\cE=\cE\otimes\cI[\psi_s].Using the concurrence-{\it vs}-purity phase diagram we characterize local channels \cE by their action on the singlet state ψs\psi_s. We specify a region of the concurrence-{\it vs.}-purity diagram that is achievable from the singlet state via the action of unital channels. We show that even most general (including non-unital) local channels acting just on a single qubit of the original singlet state cannot generate the maximally entangled mixed states (MEMS). We study in detail various time evolutions of the original singlet state induced by local Markovian semigroups. We show that the decoherence process is represented in the concurrence-{\it vs.}-purity diagram by a line that forms the lower bound of the achievable region for unital maps. On the other hand, the depolarization process is represented by a line that forms the upper bound of the region of maps induced by unital maps.Comment: 9 pages, 6 figure

    Implementation of quantum maps by programmable quantum processors

    Full text link
    A quantum processor is a device with a data register and a program register. The input to the program register determines the operation, which is a completely positive linear map, that will be performed on the state in the data register. We develop a mathematical description for these devices, and apply it to several different examples of processors. The problem of finding a processor that will be able to implement a given set of mappings is also examined, and it is shown that while it is possible to design a finite processor to realize the phase-damping channel, it is not possible to do so for the amplitude-damping channel.Comment: 10 revtex pages, no figure

    Lattice thermal conductivity of disordered binary alloys : a formulation

    Full text link
    We present here a formulation for the calculation of the configuration averaged lattice thermal conductivity in random alloys. Our formulation is based on the augmented-space theorem, introduced by one of us, combined with a generalized diagrammatic technique. The diagrammatic approach simplifies the problem of including effects of disorder corrections to a great extent. The approach allows us to obtain an expression for the effective heat current in case of disordered alloys, which in turn is used in a Kubo-Greenwood type formula for the thermal conductivity. We show that disorder scattering renormalizes the phonon propagators as well as the heat currents. The corrections to the current terms have been shown to be related to the self-energy of the propagators. We also study the effect of vertex corrections in a simplified ladder diagram approximation. A mode dependent diffusivity DγD_{\gamma} and then a total thermal diffusivity averaged over different modes are defined. Schemes for implementing the said formalism are discussed. A few initial numerical results on the frequency and temperature dependence of lattice thermal conductivity are presented for NiPd alloy and are also compared with experiment. We also display numerical results on the frequency dependence of thermal diffusivity averaged over modes.Comment: 16 pages, 17 figure

    The dominant spin relaxation mechanism in compound organic semiconductors

    Get PDF
    Despite the recent interest in "organic spintronics", the dominant spin relaxation mechanism of electrons or holes in an organic compound semiconductor has not been conclusively identified. There have been sporadic suggestions that it might be hyperfine interaction caused by background nuclear spins, but no confirmatory evidence to support this has ever been presented. Here, we report the electric-field dependence of the spin diffusion length in an organic spin-valve structure consisting of an Alq3 spacer layer, and argue that this data, as well as available data on the temperature dependence of this length, contradict the notion that hyperfine interactions relax spin. Instead, they suggest that the Elliott-Yafet mechanism, arising from spin-orbit interaction, is more likely the dominant spin relaxing mechanism.Comment: Accepted for publication in Physical Review

    Deviations from Matthiessen's Rule for SrRuO3{\rm SrRuO_3} and CaRuO3{\rm CaRuO_3}

    Full text link
    We have measured the change in the resistivity of thin films of SrRuO3{\rm SrRuO_3} and CaRuO3{\rm CaRuO_3} upon introducing point defects by electron irradiation at low temperatures, and we find significant deviations from Matthiessen's rule. For a fixed irradiation dose, the induced change in resistivity {\it decreases} with increasing temperature. Moreover, for a fixed temperature, the increase in resistivity with irradiation is found to be {\it sublinear}. We suggest that the observed behavior is due to the marked anisotropic scattering of the electrons together with their relatively short mean free path (both characteristic of many metallic oxides including cuprates) which amplify effects related to the Pippard ineffectiveness condition
    corecore