92 research outputs found

    The Magnetic Memory Effect of Ferromagnetic Materials in the Process of Stress-Magnetism Coupling

    Get PDF
    Ferromagnetic materials can produce the magnetic memory effect under stress. This provides a practical method to measure stress concentration. The relation between stress and magnetic characteristic is analyzed through energy balance theory. Force-magnetism coupling process of Fe-C crystal system is simulated by CASTEP software which is based on first principle. Electron band structure, electron density of states, and atomic magnetic moment in the process of force-magnetism coupling process are calculated. Experimental investigation of the magnetic memory effect of ferromagnetic material under different stresses has been undertaken in X52 pipeline. The results show that the magnetic characteristic of ferromagnetic material weakens under stress, and the magnetic memory signals intensity linearly decreases with the increasing stress. When material yields, the variation character of magnetic memory signals suddenly changes and the inflection points of the stress-B curves emerge. Experimental investigation is in agreement with the theoretical analysis

    Perturbed Adaptive Belief Propagation Decoding for High-Density Parity-Check Codes

    Get PDF
    Algebraic codes such as BCH code are receiving renewed interest as their short block lengths and low/no error floors make them attractive for ultra-reliable low-latency communications (URLLC) in 5G wireless networks. This article aims at enhancing the traditional adaptive belief propagation (ABP) decoding, which is a soft-in-soft-out (SISO) decoding for high-density parity-check (HDPC) algebraic codes, such as Reed-Solomon (RS) codes, Bose-Chaudhuri-Hocquenghem (BCH) codes, and product codes. The key idea of traditional ABP is to sparsify certain columns of the parity-check matrix corresponding to the least reliable bits with small log-likelihood-ratio (LLR) values. This sparsification strategy may not be optimal when some bits have large LLR magnitudes but wrong signs. Motivated by this observation, we propose a Perturbed ABP (P-ABP) to incorporate a small number of unstable bits with large LLRs into the sparsification operation of the parity-check matrix. In addition, we propose to apply partial layered scheduling or hybrid dynamic scheduling to further enhance the performance of P-ABP. Simulation results show that our proposed decoding algorithms lead to improved error correction performances and faster convergence rates than the prior-art ABP variants

    L2hgdh Deficiency Accumulates l-2-Hydroxyglutarate with Progressive Leukoencephalopathy and Neurodegeneration

    Get PDF
    l-2-Hydroxyglutarate aciduria (L-2-HGA) is an autosomal recessive neurometabolic disorder caused by a mutation in the l-2-hydroxyglutarate dehydrogenase (L2HGDH) gene. In this study, we generated L2hgdh knockout (KO) mice and observed a robust increase of l-2-hydroxyglutarate (L-2-HG) levels in multiple tissues. The highest levels of L-2-HG were observed in the brain and testis, with a corresponding increase in histone methylation in these tissues. L2hgdh KO mice exhibit white matter abnormalities, extensive gliosis, microglia-mediated neuroinflammation, and an expansion of oligodendrocyte progenitor cells (OPCs). Moreover, L2hgdh deficiency leads to impaired adult hippocampal neurogenesis and late-onset neurodegeneration in mouse brains. Our data provide in vivo evidence that L2hgdh mutation leads to L-2-HG accumulation, leukoencephalopathy, and neurodegeneration in mice, thereby offering new insights into the pathophysiology of L-2-HGA in humans

    Phosphorous application improves drought tolerance of phoebe zhennan

    Get PDF
    Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from anthropogenic disturbances, several biotic constraints currently restrict its growth and development. However, little attention has been given to building adaptive strategies for its conservation by examining its morphological and physio-biochemical responses to drought stress, and the role of fertilizers on these responses. A randomized experimental design was used to investigate the effects of two levels of irrigation (well-watered and drought-stressed) and phosphorous (P) fertilization treatment (with and without P) to assess the morphological and physio-biochemical responses of P. zhennan seedlings to drought stress. In addition, we evaluated whether P application could mitigate the negative impacts of drought on plant growth and metabolism. Drought stress had a significant negative effect on the growth and metabolic processes of P. zhennan. Despite this, reduced leaf area, limited stomatal conductance, reduced transpiration rate, increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes accumulation suggested that the species has good adaptive strategies for tolerating drought stress. Application of P had a significant positive effect on root biomass, signifying its improved water extracting capacity from the soil. Moreover, P fertilization significantly increased leaf relative water content, net photosynthetic rate, and maximal quantum efficiency of PSII under drought stress conditions. This may be attributable to several factors, such as enhanced root biomass, decreased malondialdehyde content, and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds. However, P application had only a slight or negligible effect on the growth and metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability for drought resistance, while P application facilitates and improves drought tolerance mostly through physio-biochemical adjustments, regardless of water availability. It is imperative to explore the underlying metabolic mechanisms and effects of different levels of P fertilization on P. zhennan under drought conditions in order to design appropriate conservation and management strategies for this species, which is at risk of extinction.Fil: Tariq, Akash. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Pan, Kaiwen. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Olatunji, Olusanya A.. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Graciano, Corina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de FisiologĂ­a Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de FisiologĂ­a Vegetal; ArgentinaFil: Li, Zilong. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Sun, Feng. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Sun, Xiaoming. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Song, Dagang. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Chen, Wenkai. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Zhang, Aiping. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Wu, Xiaogang. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Zhang, Lin. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Mingrui, Deng. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Xiong, Qinli. Chinese Academy of Sciences; RepĂşblica de ChinaFil: Liu, Chenggang. Chinese Academy of Sciences; RepĂşblica de Chin

    Increased leisure-time physical activity associated with lower onset of diabetes in 44 828 adults with impaired fasting glucose:a population-based prospective cohort study

    Get PDF
    AimsTo evaluate the effects of habitual leisure-time physical activity (LTPA) on incident type 2 diabetes in a prospective cohort of Chinese adults with impaired fasting glucose (IFG).Methods44 828 Chinese adults aged 20–80 years with newly detected IFG but free from cardiovascular and cerebrovascular disease were recruited and followed up from 1996 to 2014. Incident type 2 diabetes was identified by fasting plasma glucose ≥7 mmol/L. The participants were classified into four categories based on their self-reported weekly LTPA: inactive, low, moderate, or high. Hazard ratios (HRs) and population attributable fractions (PAFs) were estimated with adjustment for established diabetic risk factor.ResultsAfter 214 148 person-years of follow-up, we observed an inverse dose–response relationship between LTPA and diabetes risk. Compared with inactive participants, diabetes risk in individuals reporting low, moderate and high volume LTPA were reduced by 12% (HR 0.88, 95% CI 0.80 to 0.99; P=0.015), 20% (HR 0.80, 95% CI 0.71 to 0.90; P&lt;0.001), and 25% (HR 0.75, 95% CI 0.67 to 0.83; P&lt;0.001), respectively. At least 19.2% (PAF 19.2%, 95% CI 5.9% to 30.6%) of incident diabetes cases could be avoided if the inactive participants had engaged in WHO recommendation levels of LTPA. This would correspond to a potential reduction of at least 7 million diabetic patients in the Greater China area.ConclusionsOur results show higher levels of LTPA are associated with a lower risk of diabetes in IFG subjects. These data emphasise the urgent need for promoting physical activity as a preventive strategy against diabetes to offset the impact of population ageing and the growing obesity epidemic.</jats:sec

    Roll Angle Measurement for a Spinning Vehicle Based on GPS Signals Received by a Single-Patch Antenna

    No full text
    Roll angle measurement is an essential technology in the trajectory correction projectiles. In this paper, an algorithm to detect the roll angle and rotational speed of a spinning vehicle is studied by using a GPS (Global Positioning System) receiver with a single side-mounted antenna. A Frequency-Locked Loop (FLL) assisted Phase-Locked Loop (PLL) is designed to obtain the attitude information from GPS signals, and the optimal parameters of this system are discussed when different rotational speeds are considered. The error estimation of this method and signal-to-noise ratio analysis of GPS signals are also studied. Finally, experiments on the rotary table were carried out to verify the proposed method. The experimental results showed that the proposed algorithm can detect the roll angle in a precision of within 5 degrees

    Novel Aiming Method for Spin-Stabilized Projectiles with a Course Correction Fuze Actuated by Fixed Canards

    No full text
    Spin-stabilized projectiles with course correction fuzes actuated by fixed canards have the problem of great coupling in both the normal and lateral directions due to intensive gyroscopic effects, which leads to inconsistent maneuverability in different directions. Due to the limited correction ability, which results from the miniaturization of the fuze and fixed canards, a target-aiming method is proposed here to make full use of the correction ability of the canards. From analysis on how the canards work and building an angular motion model, the correction characteristics of a spinning projectile with fixed canards have been studied, and the inconsistent maneuverability in different directions of the projectile has been explained and used to help establish the proposed target aiming method. Hardware-in-the-loop simulation based on a 155 mm howitzer shows that when the correction ability of fixed canards is unchanged, the proposed method can improve the striking accuracy by more than 20% when compared to the traditional method

    Research on a Super-Resolution and Low-Complexity Positioning Algorithm Using FMCW Radar Based on OMP and FFT in 2D Driving Scene

    No full text
    Multitarget positioning technology, such as FMCW millimeter-wave radar, has broad application prospects in autonomous driving and related mobile scenarios. However, it is difficult for existing correlation algorithms to balance high resolution and low complexity, and it is also difficult to ensure the robustness of the positioning algorithm using an aging antenna. This paper proposes a super-resolution and low-complexity positioning algorithm based on the orthogonal matching pursuit algorithm that can achieve more accurate distance and angle estimation for multiple objects in a low-SNR environment. The algorithm proposed in this paper improves the resolving power by two and one orders of magnitude, respectively, compared to the classical FFT and MUSIC algorithms in the same signal-to-noise environment, and the complexity of the algorithm can be reduced by about 25–30%, with the same resolving power as the OMP algorithm. Based on the positioning algorithm proposed in our paper, we use the PSO algorithm to optimize the arrangement of an aging antenna array so that its angle estimation accuracy is equivalent to that observed when the antenna is intact, improving the positioning algorithm’s robustness. This paper also further realizes the use of the proposed algorithm and a single-frame intermediate frequency signal to estimate the position angle information of the object and obtain its motion trajectory and velocity, verifying the proposed algorithm’s estimation ability when it comes to these qualities in a moving scene. Furthermore, this paper designs and carries out simulations and experiments. The experimental results verify that the positioning algorithm proposed in this paper can achieve accuracy, robustness, and real-time performance in autonomous driving scenarios

    Bending and Buckling of Circular Sandwich Plates with a Hardened Core

    No full text
    Hard-core sandwich plates are widely used in the field of aviation, aerospace, transportation, and construction thanks to their superior mechanical properties such as sound absorption, heat insulation, shock absorption, and so on. As an important form, the circular sandwich is very common in the field of engineering. Thus, theoretical analysis and numerical simulation of bending and buckling for isotropic circular sandwich plates with a hard core (SP-HC) are conducted in this study. Firstly, the revised Reissner’s theory was used to derive the bending equations of isotropic circular SP-HC for the first time. Then, the analytic solutions to bending deformation for circular and annular sandwich SP-HCs under some loads and boundary conditions were obtained through the decoupled simplification. Secondly, an analytic solution to bending deformation for a simply supported annular SP-HC under uniformly distributed bending moment and shear force along the inner edge was given. Finally, the differential equations of buckling for circular SP-HCs in polar coordinates were derived to obtain the critical loads of overall instability of SP-HC under simply supported and fixed-end supported boundary conditions. Meanwhile, the numerical simulations using Nastran software were conducted to compare with the theoretical analyses using Reissner’s theory and the derived models in this study. The theoretical and numerical results showed that the present formula proposed in this study can be suitable to both SP-HC and SP-SC. The efforts can provide valuable information for safe and stable application of multi-functional composite material of SP-HC
    • …
    corecore