26 research outputs found

    Using models of the ocean's mean dynamic topography to identify errors in coastal geodetic levelling

    Get PDF
    Identifying errors (blunders and systematic errors) in coastal geodetic levelling networks has often been problematic. This is because (1) mean sea level (MSL) at tide gauges cannot be directly compared to height differences from levelling because the geoid/quasigeoid and MSL are not parallel, being separated by the ocean’s mean dynamic topography (MDT) and (2) the lack of redundancy at the edge of the levelling network. This paper sets out a methodology to independently identify blunders and/or systematic errors (over long distances) in geodetic levelling using MDT models to account for the separation between the geoid/quasigeoid and MSL at tide gauges. This method is then tested in a case study using an oceanographic MDT model, MSL observations, GNSS data and a quasigeoid model. The results are significant because the errors found could not be detected by standard levelling misclosure checks alone, with supplementary data from an MDT model, with cross-validation from GNSS-quasigeoid allowing their detection. In addition, it appears that an oceanographic-only MDT is as effective as GNSS and a quasigeoid model for detecting levelling errors, which could be particularly useful for countries with coastal levelling errors in their levelling networks that cannot be identified by conventional levelling closure checks

    Height Systems and Vertical Datums: a Review in the Australian Context

    Get PDF
    This paper reviews (without equations) the various definitions of height systems and vertical geodetic datum surfaces, together with their practical realisation for users in Australia. Excluding geopotential numbers, a height system is a one-dimensional coordinate system used to express the metric distance (height) of a point from some reference surface. Its definition varies according to the reference surface chosen and the path along which the height is measured. A vertical geodetic datum is the practical realisation of a height system and its reference surface for users, nominally tied to mean sea level. In Australia, the normal-orthometric height system is used, which is embedded in the Australian Height Datum (AHD). The AHD was realised by the adjustment of ~195,000 km of spirit-levelling observations fixed to limited-term observations of mean sea level at multiple tide-gauges. The paper ends by giving some explanation of the problems with the AHD and of the differences between the AHD and the national geoid model, pointing out that it is preferable to recompute the AHD

    Towards an International Height Reference System: insights from the Colorado geoid experiment using AUSGeoid computation methods

    Get PDF
    We apply the AUSGeoid data processing and computation methodologies to data provided for the International Height Reference System (IHRS) Colorado experiment as part of the International Association of Geodesy Joint Working Groups 0.1.2 and 2.2.2. This experiment is undertaken to test a range of different geoid computation methods from international research groups with a view to standardising these methods to form a set of conventions that can be established as an IHRS. The IHRS can realise an International Height Reference Frame to be used to study physical changes on and within the Earth. The Colorado experiment study site is much more mountainous (maximum height 4401 m) than the mostly flat Australian continent (maximum height 2228 m), and the available data over Colorado are different from Australian data (e.g. much more extensive airborne gravity coverage). Hence, we have tested and applied several modifications to the AUSGeoid approach, which had been tailored to the Australian situation. This includes different methods for the computation of terrain corrections, the gridding of terrestrial gravity data, the treatment of long-wavelength errors in the gravity anomaly grid and the combination of terrestrial and airborne data. A new method that has not previously been tested is the application of a spherical harmonic high-pass filter to residual anomalies. The results indicate that the AUSGeoid methods can successfully be used to compute a high accuracy geoid in challenging mountainous conditions. Modifications to the AUSGeoid approach lead to root-mean-square differences between geoid models up to ~ 0.028 m and agreement with GNSS-levelling data to ~ 0.044 m, but the benefits of these modifications cannot be rigorously assessed due to the limitation of the GNSS-levelling accuracy over the computation area

    Third International Symposium on the North American Vertical Datum (Navd Symposium'85)

    No full text

    Best Methods for High Accuracy Real Time GNSS Positioning From a Single Reference Station

    No full text
    corecore