101 research outputs found

    Dynamical friction in slab geometries and accretion disks

    Full text link
    The evolution of planets, stars and even galaxies is driven, to a large extent, by dynamical friction of gravitational origin. There is now a good understanding of the friction produced by extended media, either collisionless of fluid-like. However, the physics of accretion or protoplanetary disks, for instance, is described by slab-like geometries instead, compact in one spatial direction. Here, we find, for the first time, the gravitational wake due to a massive perturber moving through a slab-like medium, describing e.g. accretion disks with sharp transitions. We show that dynamical friction in such environments can be substantially reduced relatively to spatially extended profiles. Finally, we provide simple and accurate expressions for the gravitational drag force felt by the perturber, in both the subsonic and supersonic regime.Comment: 10 pages, 8 figure

    Mathisson's helical motions demystified

    Full text link
    The motion of spinning test particles in general relativity is described by Mathisson-Papapetrou-Dixon equations, which are undetermined up to a spin supplementary condition, the latter being today still an open question. The Mathisson-Pirani (MP) condition is known to lead to rather mysterious helical motions which have been deemed unphysical, and for this reason discarded. We show that these assessments are unfounded and originate from a subtle (but crucial) misconception. We discuss the kinematical explanation of the helical motions, and dynamically interpret them through the concept of hidden momentum, which has an electromagnetic analogue. We also show that, contrary to previous claims, the frequency of the helical motions coincides exactly with the zitterbewegung frequency of the Dirac equation for the electron.Comment: To appear in the Proceedings of the Spanish Relativity Meeting 2011 (ERE2011), "Towards new paradigms", Madrid 29 August - 2 September 201

    Collisions of charged black holes

    Get PDF
    We perform fully nonlinear numerical simulations of charged-black-hole collisions, described by the Einstein-Maxwell equations, and contrast the results against analytic expectations. We focus on head-on collisions of nonspinning black holes, starting from rest and with the same charge-to-mass ratio, Q/M. The addition of charge to black holes introduces a new interesting channel of radiation and dynamics, most of which seem to be captured by Newtonian dynamics and flat-space intuition. The waveforms can be qualitatively described in terms of three stages: (i) an infall phase prior to the formation of a common apparent horizon; (ii) a nonlinear merger phase that corresponds to a peak in gravitational and electromagnetic energy; (iii) the ringdown marked by an oscillatory pattern with exponentially decaying amplitude and characteristic frequencies that are in good agreement with perturbative predictions. We observe that the amount of gravitational-wave energy generated throughout the collision decreases by about 3 orders of magnitude as the charge-to-mass ratio Q/M is increased from 0 to 0.98. We interpret this decrease as a consequence of the smaller accelerations present for larger values of the charge. In contrast, the ratio of energy carried by electromagnetic to gravitational radiation increases, reaching about 22% for the maximum Q/M ratio explored, which is in good agreement with analytic predictions

    Collisions of oppositely charged black holes

    Get PDF
    The first fully non-linear numerical simulations of colliding charged black holes in D=4 Einstein-Maxwell theory were recently reported arXiv:1205.1063. These collisions were performed for black holes with equal charge-to-mass ratio, for which initial data can be found in closed analytic form. Here we generalize the study of collisions of charged black holes to the case of unequal charge-to-mass ratios. We focus on oppositely charged black holes, as to maximize acceleration-dependent effects. As |Q|/M increases from 0 to 0.99, we observe that the gravitational radiation emitted increases by a factor of ~ 2.7; the electromagnetic radiation emission becomes dominant for |Q|/M >~ 0.37 and at |Q|/M=0.99 is larger, by a factor of ~ 5.8, than its gravitational counterpart. We observe that these numerical results exhibit a precise and simple scaling with the charge. Furthermore, we show that the results from the numerical simulations are qualitatively captured by a simple analytic model that computes the electromagnetic dipolar radiation and the gravitational quadrupolar radiation of two non-relativistic interacting particles in Minkowski spacetime.Comment: 11 pages, 4 figures. Matches version to appear in PR

    Strong cosmic censorship: The nonlinear story

    Get PDF
    A satisfactory formulation of the laws of physics entails that the future evolution of a physical system should be determined from appropriate initial conditions. The existence of Cauchy horizons in solutions of the Einstein field equations is therefore problematic, and expected to be an unstable artifact of General Relativity. This is asserted by the Strong Cosmic Censorship Conjecture, which was recently put into question by an analysis of the linearized equations in the exterior of charged black holes in an expanding universe. Here, we numerically evolve the nonlinear Einstein-Maxwell-scalar field equations with a positive cosmological constant, under spherical symmetry, and provide strong evidence that mass inflation indeed does not occur in the near extremal regime. This shows that nonlinear effects might not suffice to save the Strong Cosmic Censorship Conjecture.Comment: 9 pages, 8 figures. v2: Matches published versio

    Dynamics of black holes in de Sitter spacetimes

    Get PDF
    Nonlinear dynamics in cosmological backgrounds has the potential to teach us immensely about our Universe, and also to serve as prototype for nonlinear processes in generic curved spacetimes. Here we report on dynamical evolutions of black holes in asymptotically de Sitter spacetimes. We focus on the head-on collision of equal mass binaries and for the first time compare analytical and perturbative methods with full blown nonlinear simulations. Our results include an accurate determination of the merger/scatter transition (consequence of an expanding background) for small mass binaries and a test of the cosmic censorship conjecture, for large mass binaries. We observe that, even starting from small separations, black holes in large mass binaries eventually lose causal contact, in agreement with the conjecture
    • …
    corecore