84 research outputs found
Space Decompositions and Solvers for Discontinuous Galerkin Methods
We present a brief overview of the different domain and space decomposition
techniques that enter in developing and analyzing solvers for discontinuous
Galerkin methods. Emphasis is given to the novel and distinct features that
arise when considering DG discretizations over conforming methods. Connections
and differences with the conforming approaches are emphasized.Comment: 2 pages 2 figures no table
A Two-Level Method for Mimetic Finite Difference Discretizations of Elliptic Problems
We propose and analyze a two-level method for mimetic finite difference
approximations of second order elliptic boundary value problems. We prove that
the two-level algorithm is uniformly convergent, i.e., the number of iterations
needed to achieve convergence is uniformly bounded independently of the
characteristic size of the underling partition. We also show that the resulting
scheme provides a uniform preconditioner with respect to the number of degrees
of freedom. Numerical results that validate the theory are also presented
- …