2 research outputs found

    Robust block preconditioners for biot’s model

    Get PDF
    In this paper, we design robust and efficient block preconditioners for the two-field formulation of Biot’s consolidation model, where stabilized finite-element discretizations are used. The proposed block preconditioners are based on the well-posedness of the discrete linear systems. Block diagonal (norm-equivalent) and block triangular preconditioners are developed, and we prove that these methods are robust with respect to both physical and discretization parameters. Numerical results are presented to support the theoretical results

    Robust preconditioners for a new stabilized discretization of the poroelastic equations

    Get PDF
    In this paper, we present block preconditioners for a stabilized discretization of the poroelastic equations developed in [C. Rodrigo, X. Hu, P. Ohm, J. Adler, F. Gaspar, and L. Zikatanov, Comput. Methods Appl. Mech. Engrg., 341 (2018), pp. 467-484]. The discretization is proved to be well-posed with respect to the physical and discretization parameters and thus provides a framework to develop preconditioners that are robust with respect to such parameters as well. We construct both norm-equivalent (diagonal) and field-of-value-equivalent (triangular) preconditioners for both the stabilized discretization and a perturbation of the stabilized discretization, which leads to a smaller overall problem after static condensation. Numerical tests for both two-and three-dimensional problems confirm the robustness of the block preconditioners with respect to the physical and discretization parameters
    corecore