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1 Introduction

In this work, we study the quasi-static Biot’s model for soil consolidation. For
linearly elastic, homogeneous, and isotropic porous medium, saturated by an
incompressible Newtonian fluid, the consolidation is modeled by the following
system of partial differential equations (see [8]):

equilibrium equation: −div σ ′ + α∇ p = g, in Ω, (1)

constitutive equation: σ ′ = 2με(u) + λ div(u)I, in Ω, (2)

compatibility condition: ε(u) = 1

2
(∇u + ∇ut ), in Ω, (3)

Darcy’s law: w = −K∇p, in Ω, (4)

continuity equation: −α div ∂tu − div w = f, in Ω, (5)

where λ and μ are the Lamé coefficients, α is the Biot-Willis constant (assumed
to be one without loss of generality), K is the hydraulic conductivity (ratio of the
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permeability of the porous medium to the viscosity of the fluid), I is the identity
tensor, u is the displacement vector, p is the pore pressure, σ ′ and ε are the effective
stress and strain tensors for the porous medium, and w is the percolation velocity of
the fluid relative to the soil. The right-hand-side term, g, is the density of applied
body forces and the source term f represents a forced fluid extraction or injection
process. Here, we consider a bounded open subset, Ω ⊂ R

d, d = 2, 3 with
regular boundary Γ . This system is often subject to the following set of boundary
conditions:

p = 0, for x ∈ Γ t , σ ′ n = 0, for x ∈ Γt ,

u = 0, for x ∈ Γ c, w · n = 0, for x ∈ Γc,

where n is the outward unit normal to the boundary, Γ = Γ t ∪ Γ c, with Γt and
Γc being open (with respect to Γ ) subsets of Γ with nonzero measure. These, or
similar conditions, along with appropriate initial conditions for the displacement
and pressure, complete the system.

Suitable discretizations yield a large-scale linear system of equations to solve at
each time step, which are typically ill-conditioned and difficult to solve in practice.
Thus, iterative solution techniques are usually considered. For the coupled porome-
chanics equations considered here, there are two typical approaches: fully-coupled
or monolithic methods and iterative coupling methods. Monolithic techniques
solve the resulting linear system simultaneously for all the involved unknowns. In
this context, efficient preconditioners are developed to accelerate the convergence
of Krylov subspace methods and special smoothers are designed in a multigrid
framework. Examples of this approach for poromechanics are found in [5, 7, 14–
16, 23, 25] and the references therein. Iterative coupling [20, 21], in contrast, is
a sequential approach in which either the fluid flow problem or the geomechanics
part is solved first, followed by the solution of the other system. This process is
repeated until a converged solution within a prescribed tolerance is achieved. The
main advantage of iterative coupling methods is that existing software for simulating
fluid flow and geomechanics can be reused. These type of schemes have been widely
studied [4, 6, 9, 28]. In particular, in [10] and [31] a re-interpretation of the four
commonly used sequential splitting methods as preconditioned-Richardson itera-
tions with block-triangular preconditioning is presented. Such analysis indicates
that a fully-implicit method outperforms the convergence rate of the sequential-
implicit methods. Following this idea a family of preconditioners to accelerate the
convergence of Krylov subspace methods was recently proposed for the three-field
formulation of the poromechanics problem [11].

In this work, we take the monolithic approach and develop efficient block
preconditioners for Krylov subspace methods for solving the linear systems of
equations arising from the discretization of the two-field formulation of Biot’s
model. These preconditioners take advantage of the block structure of the discrete
problem, decoupling different fields at the preconditioning stage. Our theoretical
results show their efficiency and robustness with respect to the physical and
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discretization parameters. Moreover, the techniques proposed here can also be used
for designing fast solvers for the three-field formulation of Biot’s model.

The paper is organized as follows. Section 2 introduces the stabilized finite-
element discretizations for the two-field formulation and the basics of block
preconditioners. The proposed block preconditioners are introduced in Sect. 3.
Finally, in Sect. 4, we present numerical experiments illustrating the effectiveness
and robustness of the proposed preconditioners and make concluding remarks in
Sect. 5.

2 Two-Field Formulation

First, we consider the two-field formulation of Biot’s model (1)–(5), where the
unknowns are the displacement u and the pressure p. By considering appropriate
Sobolev spaces and integration by parts, we obtain the following variational form:
find u(t) ∈ H 1

0(Ω) and p(t) ∈ H 1
0 (Ω), such that

a(u, v) − α(div v, p) = (g, v), ∀v ∈ H 1
0(Ω), (6)

−α(div ∂tu, q) − ap(p, q) = (f, q), ∀q ∈ H 1
0 (Ω), (7)

where

a(u, v) = 2μ

∫
Ω

ε(u) : ε(v) + λ

∫
Ω

div u div v and ap(p, q) =
∫

Ω

K∇p · ∇q.

Here, we assume the above holds for fixed values of t in some time interval,
(0, tmax]. The system is then completed with suitable initial data u(0) and p(0).

2.1 Finite-Element Method

We consider two stable discretizations for the two-field formulation of Biot’s model
proposed in [29]: P1-P1 elements and the Mini element with stabilization. The fully
discretized scheme at time tn, n = 1, 2, . . . is as follows:

Find un
h ∈ Vh ⊂ H 1

0(Ω) and pn
h ∈ Qh ⊂ H 1

0 (Ω), such that,

a(un
h, vh) − α(div vh, p

n
h) = (g(tn), vh), ∀vh ∈ V h, (8)

− α(div ∂̄tu
n
h, qh) − ap(pn

h, qh) − ηh2(∇ ∂̄tp
n
h,∇qh) = (f (tn), qh), ∀qh ∈ Qh,

(9)

where ∂̄tu
n
h := (un

h − un−1
h )/τ , ∂̄tp

n
h := (pn

h − pn−1
h )/τ , and η represents the

stabilization parameter. Here, V h and Qh come from the P1-P1 or Mini element. At
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each time step, the linear system has the following two-by-two block form:

A x = b, A =
(

Au αBT

αB −τAp − ηh2Lp

)
, x =

(
u

p

)
, and b =

(
f u

fp

)
, (10)

where a(u, v) → Au, −(div u, q) → B, ap(∇p,∇q) → Ap, and (∇p,∇q) → Lp

represent the discrete versions of the variational forms.

2.2 Block Preconditioners

Next, we introduce the general theory for designing block preconditioners of Krylov
subspace iterative methods [24, 27]. Let X be a real, separable Hilbert space
equipped with norm ‖ · ‖X and inner product (·, ·)X . Also let A : X 
→ X′ be
a bounded and symmetric operator induced by a symmetric and bounded bilinear
form L (·, ·), i.e. 〈A x, y〉 = L (x, y). We assume the bilinear form is bounded and
satisfies an inf-sup condition:

|L (x, y)| ≤ β‖x‖X‖y‖X, ∀x, y ∈ X and inf
x∈X

sup
y∈X

L (x, y)

‖x‖X‖y‖X
≥ γ > 0.

(11)

2.2.1 Norm-Equivalent Preconditioner

Consider a symmetric positive definite (SPD) operator M : X′ 
→ X as a
preconditioner for solving A x = b. We define an inner product (x, y)M−1 :=
〈M−1x, y〉 on X and the corresponding induced norm is ‖x‖2

M−1 := (x, x)M−1 .
It is easy to show that MA : X 
→ X is symmetric with respect to (·, ·)M−1 .
Therefore, we can use M as a preconditioner for the MINRES algorithm and use
the following theorem for the convergence rate of preconditioned MINRES.

Theorem 1 [18] If xm is the m-th iteration of MINRES and x is the exact solution,
then,

‖rm‖M ≤ 2ρm‖r0‖M , (12)

where rk = A (x − xk) is the residual after the k-th iteration, ρ = κ(MA )−1
κ(MA )+1 , and

κ(MA ) denotes the condition number ofMA .

In [27], Mardal and Winther show that, if the well-posedness conditions, (11),
hold, and M satisfies

c1‖x‖2
X ≤ ‖x‖2

M−1 ≤ c2‖x‖2
X, (13)
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then, A and M are norm-equivalent and κ(MA ) ≤ c2β
c1γ

. This implies that ρ ≤
c2β−c1γ
c2β+c1γ

. Thus, if the original problem is well-posed and the constants c1 and c2 are
independent of the physical and discretization parameters, then the convergence rate
of preconditioned MINRES is uniform, hence M is a robust preconditioner.

2.2.2 FOV-Equivalent Preconditioner

In this section we consider the class of field-of-values-equivalent (FOV-equivalent)
preconditioners ML : X′ 
→ X, for GMRES. We define the notion of FOV-
equivalence after the following classical theorem on the convergence rate of the
preconditioned GMRES method.

Theorem 2 [12, 13] If xm is the m-th iteration of the GMRES method precondi-
tioned with ML and x is the exact solution, then

‖MLA (x − xm)‖2
M−1 ≤

(
1 − Σ2

Υ 2

)m

‖MLA (x − x0)‖2
M−1, (14)

where, for any x ∈ X,

Σ ≤ (MLA x, x)M−1

(x, x)M−1
,

‖MLA x‖M−1

‖x‖M−1
≤ Υ. (15)

If the constants Σ and Υ are independent of the physical and discretization
parameters, then ML is a uniform left preconditioner for GMRES and is referred
to as an FOV-equivalent preconditioner. In [24], a block lower triangular precondi-
tioner has been shown to satisfy (15) based on the well-posedness conditions, (11),
for Stokes/Navier-Stokes equations. More recently, the same approach has been
generalized to Maxwell’s equations [2] and Magnetohydrodynamics [26].

Similar arguments also apply to right preconditioners for GMRES, MU : X′ 
→
X, where the operators, MU and A , are FOV equivalent if, for any x′ ∈ X′,

Σ ≤ (AMUx′, x′)M
(x′, x′)M

,
‖AMUx′‖M

‖x ′‖M ≤ Υ. (16)

Again, if Σ and Υ are independent of the physical and discretization parameters,
MU is a uniform right preconditioner for GMRES. Such an approach leads to block
upper triangular preconditioners.
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3 Robust Preconditioners for Biot’s Model

In this section, following the framework proposed in [24, 27] and techniques
recently developed in [26], we design block diagonal and triangular preconditioners
based on the well-posedness of the discretized linear system at each time step. First,
we study the well-posedness of the linear system (10). The analysis here is similar
to the analysis in [29]. However, we make sure that the constants arising from the
analysis are independent of any physical and discretization parameters.

The choice of finite-element spaces give X = V h × Qh, and the finite-element
pair satisfies the following inf-sup condition (see [30]),

sup
v∈V h

(div v, q)

‖v‖1
≥ γ 0

B‖q‖ − ξ0h‖∇q‖, ∀ q ∈ Qh. (17)

Here, γ 0
B > 0 and ξ0 ≥ 0 are constants that do not depend on the mesh size.

Moreover, if we use the Mini-element, ξ0 = 0.
For x = (u, p)T , we define the following norm,

‖x‖2
X := ‖u‖2

Au
+ τ‖p‖2

Ap
+ ηh2‖p‖2

Lp
+ α2

ζ 2
‖p‖2, (18)

where ‖u‖2
Au

:= a(u,u), ‖p‖2
Ap

:= ap(∇p,∇p), ‖p‖2
Lp

:= (∇p,∇p), ζ =√
λ + 2μ

d
, and d = 2 or 3 is the dimension of the problem. With ζ defined as above,

it holds that ‖v‖Au ≤ √
dζ‖v‖1, and we can reformulate the inf-sup condition, (17),

as follows,

sup
v∈V h

(Bv, q)

‖v‖Au

≥ sup
v∈V h

(Bv, q)√
dζ‖v‖1

≥ γ 0
B√
dζ

‖q‖− ξ0

√
dζ

h‖∇q‖ =: γB

ζ
‖q‖− ξ

ζ
h‖∇q‖,

(19)

where γB := γ 0
B/

√
d and ξ = ξ0/

√
d.

Noting that for d = 2, 3, 2μ(ε(v), ε(v)) ≤ a(v, v) ≤ (2μ + dλ)(ε(v), ε(v)).
Thus, (div v, div v) ≤ d(ε(v), ε(v)) and,

ζ 2‖Bv‖2 = (λ + 2μ

d
)‖ div v‖2 ≤ ‖v‖2

Au
=⇒ ‖Bv‖ ≤ 1

ζ
‖v‖Au . (20)

This allows us to show that linear system (10) is well-posed.

Theorem 3 For x = (u, p) and y = (v, q), let

L (x, y) = (Auu, v) + α(Bv, p) + α(Bu, q) − τ(K∇p, ∇q) − ηh2(∇p, ∇q). (21)
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Then, (11) holds and A defined in (10) is an isomorphism from X to X′ provided
that the stabilization parameter, η, satisfies η = δ α2

ζ 2 with δ > 0. Moreover, the
constants γ and β are independent of the physical and discretization parameters.

Proof Based on the inf-sup condition (17) and (19), for any p, there exists w ∈ V h

such that (Bw, p) ≥
(

γB

ζ
‖p‖ − ξ

ζ
h‖∇p‖

)
‖w‖Au and ‖w‖Au = ‖p‖. For given

(u, p) ∈ V h × Qh, we choose v = u + θw, θ = ϑ
γBα
ζ

and q = −p and then have,

L (x, y) = (Auu,u + θw) + α(B(u + θw), p) − α(Bu, p)

+ τ (K∇p,∇p) + ηh2(∇p,∇p)

≥ ‖u‖2
Au

− ϑ‖u‖Au

γBα

ζ
‖p‖ + ϑ

γ 2
Bα2

ζ 2
‖p‖2 − ϑ

γBα2

ζ 2
ξh‖∇p‖‖p‖

+ τ‖p‖2
Ap

+ δ

ξ2

α2

ζ 2 ξ2h2‖∇p‖2

≥

⎛
⎜⎜⎜⎝

‖u‖Au
γBα
ζ

‖p‖
α
ζ
ξh‖∇p‖√
τ‖p‖Ap

⎞
⎟⎟⎟⎠

T ⎛
⎜⎜⎝

1 −ϑ/2 0 0
−ϑ/2 ϑ −ϑ/2 0

0 −ϑ/2 δ/ξ2 0
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

‖u‖Au
γBα
ζ

‖p‖
α
ζ
ξh‖∇p‖√
τ‖p‖Ap

⎞
⎟⎟⎟⎠ .

If 0 < ϑ < min{2, 2δ
ξ2 }, the matrix in the middle is SPD and there exists γ0 such that

L (x, y) ≥ γ0

(
‖u‖2

Au
+ γ 2

Bα2

ζ 2 ‖p‖2 + α2

ζ 2 ξ2h2‖∇p‖2 + τ‖p‖2
Ap

)
≥ γ̃ ‖x‖2

X,

where γ̃ = γ0 min{γ 2
B, ξ2/δ}. Also, it is straightforward to verify ‖(v, q)‖2

X ≤
γ̄ 2‖(u, p)‖2

X , and the boundedness of L by continuity of each term and the
Cauchy-Schwarz inequality. Therefore, L satisfies (11) with γ = γ̃ /γ̄ .

Remark 1 Note that the choice of ζ = √
λ + 2μ/d is essential to the proof, but

is consistent with previous implementations [3, 29]. Additionally, choosing any
δ > 0 is sufficient to show the well-posedness of the stabilized discretization.
However, for eliminating non-physical oscillations of the pressure approximation
seen in practice [3], this is not sufficient, and δ should be sufficiently large. For
example, in 1D, δ = 1/4 is chosen.
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3.1 Block Diagonal Preconditioner

Now that we have shown (11) and that the system is well-posed, we find SPD
operators such that (13) is satisfied. One natural choice is the Reisz operator
corresponding to the inner product (·, ·)X , (Bf , x)X = 〈f , x〉, ∀f ∈ X′, x ∈ X.

For the two-field stabilized discretization and the norm ‖ ·‖X defined in (18), we get

BD =
(

Au 0

0 τAp + ηh2Lp + α2

ζ 2 M

)−1

, (22)

where M is the mass matrix of the pressure block. Since BD satisfies the norm-
equivalent condition with c1 = c2 = 1, by Theorem 3, it holds that κ(BDA ) =
O(1).

In practice, applying the preconditioner BD involves the action of inverting
the diagonal blocks exactly, which is very expensive and infeasible. Therefore, we
replace the diagonal blocks by their spectrally equivalent SPD approximations,

MD =
(

Hu 0
0 Hp

)
,

where

c1,u(Huu,u) ≤ (A−1
u u,u) ≤ c2,u(Huu,u) (23)

c1,p(Hpp, p) ≤ ((τAp + ηh2Lp + α2

ζ 2 M)−1p,p) ≤ c2,p(Hpp, p). (24)

Again, MD and A are norm-equivalent and κ(MDA ) = O(1) by Theorem 3.

3.2 Block Triangular Preconditioners

Next, we consider block triangular preconditioners for the stabilized scheme,A . For
simplicity of the analysis, we modify A slightly by negating the second equation.

We consider two kinds of block triangular preconditioners,

BL =
(

Au 0

−αB τAp + ηh2Lp + α2

ζ 2 M

)−1

and ML =
(

H−1
u 0

−αB H−1
p

)−1

, (25)

and block upper triangular preconditioners,

BU =
(

Au αBT

0 τAp + ηh2Lp + α2

ζ 2 M

)−1

and MU =
(

H−1
u αBT

0 H−1
p

)−1

. (26)
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According to Theorem 2, we need to show that these block preconditioners
satisfy the FOV-equivalence, (15) and (16). We first consider the block lower
triangular preconditioner, BL.

Theorem 4 There exist constants Σ and Υ , independent of discretization or
physical parameters, such that, for any x = (u, p)T �= 0,

Σ ≤ (BLA x, x)(BD)−1

(x, x)(BD)−1
,

‖BLA x‖(BD)−1

‖x‖(BD)−1
≤ Υ,

provided that η = δ α2

ζ 2 with δ > 0.

Proof By direct computation,

(BLA x, x)(BD)−1 = (u,u)Au + α(BT p,u) + τ (p, p)Ap

+ ηh2(Lpp, p) + α2(BA−1
u BT p, p)

≥ Σ0

(
‖u‖2

Au
+ τ‖p‖2

Ap
+ ηh2‖p‖2

Lp
+ α2‖BT p‖2

A−1
u

)
.

Note that, due to the inf-sup condition (17),

‖BT p‖
A−1

u
= sup

v

(Bv, p)

‖v‖Au

≥ γB

ζ
‖p‖ − ξ

ζ
h‖∇p‖.

Therefore, since η = δ α2

ζ 2 with δ > 0 and by choosing 1
1+δ/ξ2 < θ < 1,

(BLA x, x)(BD)−1 ≥ Σ0

[
‖u‖2

Au
+ τ‖p‖2

Ap
+ ηh2‖p‖2

Lp

+α2
(

γB

ζ
‖p‖ − ξ

ζ
h‖∇p‖

)2
]

≥ Σ0

[
‖u‖2

Au
+ τ‖p‖2

Ap

+(1 − θ)
γ 2
Bα2

ζ 2
‖p‖2 +

(
1 + δ

ξ2
− 1

θ

)
α2

ζ 2
ξ2h2‖∇p‖2

]

≥ Σ0Σ1

(
‖u‖2

Au
+ τ‖p‖2

Ap
+ α2

ζ 2 h2‖p‖2
Lp

+ α2

ζ 2 ‖p‖2
)

=: Σ(x, x)(BD)−1,

where Σ1 := min{1, (1 − θ)γ 2
B,

(
1 + δ

ξ2 − 1
θ

)
ξ2

δ
}. This gives the lower bound.

The upper bound Υ can be obtained directly from the continuity of each term, the
Cauchy-Schwarz inequality, and the fact that ‖BT p‖

A−1
u

≤ 1
ζ
‖p‖ obtained by (20).
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Similarly, we can show that the other three block preconditioners are also FOV-
equivalent with A and, therefore, can be used as preconditioners for GMRES. Due
to the length constraint of this paper and the fact that the proofs are similar, we only
state the results here.

Theorem 5 If the conditions (23) and (24) hold and ‖I − HuAu‖Au ≤ ρ with
0 ≤ ρ < 1, and there exist constants Σ and Υ , independent of discretization and
physical parameters, such that, for any x = (u, p)T �= 0, it holds that

Σ ≤ (MLA x, x)(MD)−1

(x, x)(MD)−1
,

‖MLA x‖(MD)−1

‖x‖(MD)−1
≤ Υ,

provided that η = δ α2

ζ 2 with δ > 0.

Theorem 6 There exist constants Σ and Υ , independent of discretization or
physical parameters, such that, for any 0 �= x′ ∈ X′, it holds that

Σ ≤ (ABU x′, x′)BD

(x′, x′)BD

,
‖ABU x′‖BD

‖x′‖BD

≤ Υ,

provided that η = δ α2

ζ 2 with δ > 0.

Theorem 7 If the conditions (23) and (24) hold and ‖I − HuAu‖Au ≤ ρ with
0 ≤ ρ < 1, and there exist constants Σ and Υ , independent of discretization or
physical parameters, such that, for any 0 �= x′ ∈ X′, it holds that

Σ ≤ (AMUx′, x′)MD

(x′, x′)MD

,
‖AMUx′‖MD

‖x′‖MD

≤ Υ,

provided that η = δ α2

ζ 2 with δ > 0.

Remark 2 The block upper preconditioner BU here is related to the well-known
fixed-stress split scheme [21]. In fact, without the stabilization term, i.e., η = 0, it is
exactly a re-cast of the fixed-stress split scheme [31]. Moreover, ζ 2 = λ + 2μ/d =:
Kdr, where Kdr is the drained bulk modulus of the solid. This is exactly the choice
suggested in [22]. Here, we give a rigorous theoretical analysis when the fixed-
stress split scheme is used as a preconditioner. Our analysis is more general in the
sense that MU is an inexact version of the fixed-stress split scheme, and we have
generalized it to the finite-element discretization with stabilizations.
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4 Numerical Experiments

Finally, we provide some preliminary numerical results to demonstrate the robust-
ness of the proposed preconditioners. As a discretization, we use the stabilized
P1-P1 scheme described in [29] and implemented in the HAZMATH library [1].

We consider a 3D footing problem as in [17], on the domain, Ω = (−32, 32) ×
(−32, 32)×(0, 64). This is shown in the left side of Fig. 1, and represents a block of
porous soil. A uniform load of intensity 0.1 N/m2 is applied in a square of size 32 ×
32 m2 at the middle of the top of the domain. The base of the domain is assumed to
be fixed while the rest of the domain is free to drain. For the material properties, the
Lame coefficients are computed in terms of the Young modulus, E, and the Poisson
ratio, ν: λ = Eν

(1−2ν)(1+ν)
and μ = E

1+2ν
. Since we want to study the robustness of the

preconditioners with respect to the physical parameters, we fix E = 3 × 104 N/m2

and let ν change in the experiments. The right side of Fig. 1 shows the results of the
simulation, demonstrating the deformation due to a uniform load.

We first study the performance of the preconditioners with respect to the mesh
size h and time step size τ . Therefore, we fix K = 10−6 m2 and ν = 0.2. We
use flexible GMRES as the outer iteration with a relative residual stopping criteria
of 10−6. For MD , ML, and MU , the diagonal blocks are solved inexactly by
preconditioned GMRES with a tolerance of 10−2. The results are shown in Table 1.
We see that the block preconditioners are effective and robust with respect to the
discretization parameters h and τ .

Next, we investigate the robustness of the block preconditioners with respect to
the physical parameters K and ν. We fix the mesh size h = 1/16 and time step
size τ = 0.01. The results are shown in Table 2. From the iteration counts, we can
see that the proposed preconditioners are quite robust with respect to the physical
parameters.

Fig. 1 Computational domain and boundary conditions
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Table 1 Iteration counts for the block preconditioners (∗ means the direct method for solving
diagonal blocks is out of memory)

BD BL BU

h h h

τ 1
4

1
8

1
16

1
32

1
4

1
8

1
16

1
32

1
4

1
8

1
16

1
32

0.1 7 7 8 * 5 5 6 * 4 4 4 *

0.01 7 7 8 * 5 5 6 * 4 4 5 *

0.001 7 7 8 * 5 5 6 * 5 5 6 *

0.0001 7 7 8 * 5 5 6 * 5 5 6 *

MD ML MU

h h h

τ 1
4

1
8

1
16

1
32

1
4

1
8

1
16

1
32

1
4

1
8

1
16

1
32

0.1 8 8 9 9 6 6 8 8 6 6 8 8

0.01 8 8 9 9 6 6 8 8 6 6 8 8

0.001 8 8 9 9 6 6 8 8 6 6 8 8

0.0001 8 8 9 9 7 6 8 8 6 7 8 8

Table 2 Iteration counts when varying K or ν

ν = 0.2 and varying K

1 10−2 10−4 10−6 10−8 10−10

BD 4 7 8 8 8 8

BL 2 5 6 6 6 6

BU 3 4 5 5 5 5

MD 5 8 9 9 9 9

ML 5 7 8 8 8 8

MU 5 7 8 8 9 8

K = 10−6 and varying ν

0.1 0.2 0.4 0.45 0.49 0.499

BD 7 8 11 11 12 12

BL 5 6 8 8 8 9

BU 4 5 6 6 5 4

MD 8 9 12 13 14 13

ML 7 8 11 11 12 12

MU 7 8 7 8 17 11

5 Conclusions

We have shown that the stability of the discrete problem, using stabilized finite
elements, provides the means for designing robust preconditioners for the two-field
formulation of Biot’s consolidation model. Our analysis shows uniformly bounded
condition numbers and uniform convergence rates of the Krylov subspace methods
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for the preconditioned linear systems. More precisely, we prove that the convergence
is independent of mesh size, time step, and the physical parameters of the model.

Current work includes extending this to non-conforming (and conforming) three-
field formulations as in [19]. For discretizations that are stable independent of the
physical parameters, uniform block diagonal preconditioners can be designed using
the framework developed here. Block lower and upper triangular preconditioners for
GMRES can also be constructed in a similar fashion. In addition to their excellent
convergence properties, the triangular preconditioners naturally provide an (inexact)
fixed-stress split scheme for the three-field formulation.
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