214 research outputs found

    Improved Approximation Ratios of Fixed-Price Mechanisms in Bilateral Trades

    Full text link
    We continue the study of the performance for fixed-price mechanisms in the bilateral trade problem, and improve approximation ratios of welfare-optimal mechanisms in several settings. Specifically, in the case where only the buyer distribution is known, we prove that there exists a distribution over different fixed-price mechanisms, such that the approximation ratio lies within the interval of [0.71, 0.7381]. Furthermore, we show that the same approximation ratio holds for the optimal fixed-price mechanism, when both buyer and seller distributions are known. As a result, the previously best-known (1 - 1/e+0.0001)-approximation can be improved to 0.710.71. Additionally, we examine randomized fixed-price mechanisms when we receive just one single sample from the seller distribution, for both symmetric and asymmetric settings. Our findings reveal that posting the single sample as the price remains optimal among all randomized fixed-price mechanisms

    Yeast based biorefineries for oleochemical production

    Get PDF
    Biosynthesis of oleochemicals enables sustainable production of natural and unnatural alternatives from renewable feedstocks. Yeast cell factories have been extensively studied and engineered to produce a variety of oleochemicals, focusing on both central carbon metabolism and lipid metabolism. Here, we review recent progress towards oleochemical synthesis in yeast based biorefineries, as well as utilization of alternative renewable feedstocks, such as xylose and L-arabinose. We also review recent studies of C1 compound utilization or co-utilization and discuss how these studies can lead to third generation yeast based biorefineries for oleochemical production

    Yeast synthetic biology advances biofuel production

    Get PDF
    Increasing concerns of environmental impacts and global warming calls for urgent need to switch from use of fossil fuels to renewable technologies. Biofuels represent attractive alternatives of fossil fuels and have gained continuous attentions. Through the use of synthetic biology it has become possible to engineer microbial cell factories for efficient biofuel production in a more precise and efficient manner. Here, we review advances on yeast-based biofuel production. Following an overview of synthetic biology impacts on biofuel production, we review recent advancements on the design, build, test, learn steps of yeast-based biofuel production, and end with discussion of challenges associated with use of synthetic biology for developing novel processes for biofuel production

    Bioprospecting Through Cloning of Whole Natural Product Biosynthetic Gene Clusters

    Get PDF
    Since the discovery of penicillin, natural products and their derivatives have been a valuable resource for drug discovery. With recent development of genome mining approaches in the post-genome era, a great number of natural product biosynthetic gene clusters (BGCs) have been identified and these can potentially be exploited for the discovery of novel natural products that can find application as pharmaceuticals. Since many BGCs are silent or do not express in native hosts under laboratory conditions, heterologous expression of BGCs in genetically tractable hosts becomes an attractive route to activate these BGCs to discover the corresponding products. Here, we highlight recent achievements in cloning and discovery of natural product biosynthetic pathways via intact BGC capturing, and discuss the prospects of high-throughput and multiplexed cloning of rational-designed gene clusters in the future

    Synthetic biology advanced natural product discovery

    Get PDF
    A wide variety of bacteria, fungi and plants can produce bioactive secondary metabolites, which are often referred to as natural products. With the rapid development of DNA sequencing technology and bioinformatics, a large number of putative biosynthetic gene clusters have been reported. However, only a limited number of natural products have been discovered, as most biosynthetic gene clusters are not expressed or are expressed at extremely low levels under conventional laboratory conditions. With the rapid development of synthetic biology, advanced genome mining and engineering strategies have been reported and they provide new opportunities for discovery of natural products. This review discusses advances in recent years that can accelerate the design, build, test, and learn (DBTL) cycle of natural product discovery, and prospects trends and key challenges for future research directions

    Expression of fungal biosynthetic gene clusters in S. cerevisiae for natural product discovery

    Get PDF
    Fungi are well known for production of antibiotics and other bioactive secondary metabolites, that can be served as pharmaceuticals, therapeutic agents and industrially useful compounds. However, compared with the characterization of prokaryotic biosynthetic gene clusters (BGCs), less attention has been paid to evaluate fungal BGCs. This is partially because heterologous expression of eukaryotic gene constructs often requires replacement of original promoters and terminators, as well as removal of intron sequences, and this substantially slow down the workflow in natural product discovery. It is therefore of interest to investigate the possibility and effectiveness of heterologous expression and library screening of intact BGCs without refactoring in industrial friendly microbial cell factories, such as the yeast Saccharomyces cerevisiae. Here, we discuss the importance of developing new research directions on library screening of fungal BGCs in yeast without refactoring, followed by outlooking prominent opportunities and challenges for future advancement

    Multiplayer General Lotto game

    Full text link
    In this paper, we explore the multiplayer General Lotto Blotto game over a single battlefield, a notable variant of the Colonel Blotto game. In this version, each player employs a probability distribution for resource allocation, ensuring that the expected expenditure does not surpass their budget. We first establish the existence of a Nash equilibrium for a modified version of this game, in which there is a common threshold that no player's bid can exceed. We next extend our findings to demonstrate the existence of a Nash equilibrium in the original game, which does not incorporate this threshold. Moreover, we provide detailed characterizations of the Nash equilibrium for both the original game and its modified version. In the Nash equilibrium of the unmodified game, we observe that the upper endpoints of the supports of players' equilibrium strategies coincide, and the minimum value of a player's support above zero inversely correlates with their budget. Specifically, we present closed-form solutions for the Nash equilibrium with threshold for two players

    Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    Get PDF
    Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor) or a larger protein (α-amylase). Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a) degradation of protein/recycling amino acids, (b) overall transcription/translation repression, and (c) oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases
    corecore